Skip to main content

Advertisement

Log in

Current concepts in neuroendocrine cancer metabolism

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Neuroendocrine (NE) cancers occur in multiple anatomic locations and range in prognosis from indolent to aggressive. In addition, adenocarcinomas can express gene products associated with NE cells, referred to as NE differentiation (NED), which correlates with poor prognosis and aggressive disease. Several metabolites and peptides produced by NE cells have been discovered that engage in cellular signaling and have autocrine and paracrine effects on cancer cell proliferation. This review focuses on the current knowledge of small molecule metabolism in NE cancers involving the synthesis of biogenic amine, polyamine, and amino acid neurotransmitters. Systems biology-directed approaches to NE cancer metabolism using gene expression profiling, liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR) are also discussed. Furthermore, knowledge of metabolic and signaling pathways in NE cancers has led to the successful implementation of therapeutic regimens in cell culture and animal models of NE carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NE:

neuroendocrine

NED:

neuroendocrine differentiation

DDC:

dopa decarboxylase

ABP1:

amiloride binding protein 1

GABA:

gamma-aminobutyric acid

FT-ICR MS:

Fourier-transform ion cyclotron resonance mass spectrometry

MAS-NMR:

magic angle spinning-nuclear magnetic resonance

References

  1. Pearse AG (1966) 5-hydroxytryptophan uptake by dog thyroid ‘C’ cells, and its possible significance in polypeptide hormone production. Nature 211:598–600

    PubMed  CAS  Google Scholar 

  2. Pearse AG (1968) Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R Soc Lond B Biol Sci 170:71–80

    Article  PubMed  CAS  Google Scholar 

  3. Delcore R, Friesen SR (1993) Embryologic concepts in the APUD system. Semin Surg Oncol 9:349–361

    PubMed  CAS  Google Scholar 

  4. Falkmer S (1993) Phylogeny and ontogeny of the neuroendocrine cells of the gastrointestinal tract. Endocrinol Metab Clin North Am 22:731–752

    PubMed  CAS  Google Scholar 

  5. Andrew A, Kramer B, Rawdon BB (1998) The origin of gut and pancreatic neuroendocrine (APUD) cells–the last word? J Pathol 186:117–118

    PubMed  CAS  Google Scholar 

  6. Johnson DE, Georgieff MK (1989) Pulmonary neuroendocrine cells. Their secretory products and their potential roles in health and chronic lung disease in infancy. Am Rev Respir Dis 140:1807–1812

    PubMed  CAS  Google Scholar 

  7. Abrahamsson PA (1999) Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer 6:503–519

    PubMed  CAS  Google Scholar 

  8. Wick MR (2000) Neuroendocrine neoplasia. Current concepts. Am J Clin Pathol 113:331–335

    Google Scholar 

  9. Laragh JH, Brenner BM (eds) (1995) Pheochromocytoma: a clinical overview in Hypertension: pathophysiology, diagnosis, and management, 2nd edn. Raven, New York, pp 2225–2244

    Google Scholar 

  10. Babin E, Rouleau V, Vedrine PO, Toussaint B, de Raucourt D, Malard O, Cosmidis A, Makaeieff M, Dehesdin D (2006) Small cell neuroendocrine carcinoma of the nasal cavity and paranasal sinuses. J Laryngol Otol 120:289–297

    PubMed  CAS  Google Scholar 

  11. Demellawy DE, Samkari A, Sur M, Denardi F, Alowami S (2006) Primary small cell carcinoma of the cecum. Ann Diagn Pathol 10:162–165

    PubMed  Google Scholar 

  12. Montie JE (2006) Small cell carcinoma of bladder: a single-center prospective study of 25 cases treated in analogy to small cell lung cancer. J Urol 175:2070–2071

    Google Scholar 

  13. Tsunoda S, Jobo T, Arai M, Imai M, Kanai T, Tamura T, Watanabe J, Obokata A, Kuramoto H (2005) Small-cell carcinoma of the uterine cervix: a clinicopathologic study of 11 cases. Int J Gynecol Cancer 15:295–300

    PubMed  CAS  Google Scholar 

  14. Yao JL, Madeb R, Bourne P, Lei J, Yang X, Tickoo S, Liu Z, Tan D, Cheng L, Hatem F et al (2006) Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 30:705–712

    PubMed  Google Scholar 

  15. Sorensen M, Lassen U, Hansen HH (1998) Current therapy of small cell lung cancer. Curr Opin Oncol 10:133–138

    PubMed  CAS  Google Scholar 

  16. Jackman DM, Johnson BE (2005) Small-cell lung cancer. Lancet 366:1385–1396

    PubMed  CAS  Google Scholar 

  17. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  18. Vashchenko N, Abrahamsson PA (2005) Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 47:147–155

    PubMed  CAS  Google Scholar 

  19. Bonkhoff H, Wernert N, Dhom G, Remberger K (1991) Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate 19:91–98

    PubMed  CAS  Google Scholar 

  20. Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M et al (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA 98:13790–13795

    PubMed  CAS  Google Scholar 

  21. Shinji S, Naito Z, Ishiwata T, Tanaka N, Furukawa K, Suzuki H, Seya T, Kan H, Tsuruta H, Matsumoto S et al (2006) Neuroendocrine cell differentiation of poorly differentiated colorectal adenocarcinoma correlates with liver metastasis. Int J Oncol 29:357–364

    PubMed  CAS  Google Scholar 

  22. Ippolito JE, Xu J, Jain S, Moulder K, Mennerick S, Crowley JR, Townsend RR, Gordon JI (2005) An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. Proc Natl Acad Sci USA 102:9901–9906

    Google Scholar 

  23. Quek ML, Daneshmand S, Rodrigo S, Cai J, Dorff TB, Groshen S, Skinner DG, Lieskovsky G, Pinski J (2006) Prognostic significance of neuroendocrine expression in lymph node-positive prostate cancer. Urology 67:1247–1252

    PubMed  Google Scholar 

  24. Cheville JC, Tindall D, Boelter C, Jenkins R, Lohse CM, Pankratz VS, Sebo TJ, Davis B, Blute ML (2002) Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer 95:1028–1036

    PubMed  Google Scholar 

  25. Berruti A, Mosca A, Tucci M, Terrone C, Torta M, Tarabuzzi R, Russo L, Cracco C, Bollito E, Scarpa RM et al (2005) Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocr Relat Cancer 12:109–117

    PubMed  CAS  Google Scholar 

  26. Gum JR Jr, Hicks JW, Crawley SC, Yang SC, Borowsky AD, Dahl CM, Kakar S, Kim DH, Cardiff RD, Kim YS (2004) Mice expressing SV40 T antigen directed by the intestinal trefoil factor promoter develop tumors resembling human small cell carcinoma of the colon. Mol Cancer Res 2:504–513

    PubMed  CAS  Google Scholar 

  27. Syder AJ, Karam SM, Mills JC, Ippolito JE, Ansari HR, Farook V, Gordon JI (2004) A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proc Natl Acad Sci USA 101:4471–4476

    PubMed  CAS  Google Scholar 

  28. Linnoila RI, Zhao B, DeMayo JL, Nelkin BD, Baylin SB, DeMayo FJ, Ball DW (2000) Constitutive achaete-scute homologue-1 promotes airway dysplasia and lung neuroendocrine tumors in transgenic mice. Cancer Res 60:4005–4009

    PubMed  CAS  Google Scholar 

  29. Masumori N, Thomas TZ, Chaurand P, Case T, Paul M, Kasper S, Caprioli RM, Tsukamoto T, Shappell SB, Matusik RJ (2001) A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61:2239–2249

    PubMed  CAS  Google Scholar 

  30. Garabedian EM, Humphrey PA, Gordon JI (1998) A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci USA 95:15382–15387

    PubMed  CAS  Google Scholar 

  31. Hu Y, Wang T, Stormo GD, Gordon JI (2004) RNA interference of achaete-scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites. Proc Natl Acad Sci USA 101:5559–5564

    PubMed  CAS  Google Scholar 

  32. Huh YH, Jeon SH, Yoo SH (2003) Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–40589

    PubMed  CAS  Google Scholar 

  33. Videen JS, Mezger MS, Chang YM, O’Connor DT (1992) Calcium and catecholamine interactions with adrenal chromogranins. Comparison of driving forces in binding and aggregation. J Biol Chem 267:3066–3073

    Google Scholar 

  34. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    Google Scholar 

  35. di Sant’Agnese PA (1992) Neuroendocrine differentiation in human prostatic carcinoma. Hum Pathol 23:287–296

    Google Scholar 

  36. Gazdar AF, Helman LJ, Israel MA, Russell EK, Linnoila RI, Mulshine JL, Schuller HM, Park JG (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48:4078–4082

    PubMed  CAS  Google Scholar 

  37. Hu Y, Ippolito JE, Garabedian EM, Humphrey PA, Gordon JI (2002) Molecular characterization of a metastatic neuroendocrine cell cancer arising in the prostates of transgenic mice. J Biol Chem 277:44462–44474

    PubMed  CAS  Google Scholar 

  38. Vachtenheim J, Novotna H (1997) Expression of the aromatic L-amino acid decarboxylase mRNA in human tumour cell lines of neuroendocrine and neuroectodermal origin. Eur J Cancer 33:2411–2417

    PubMed  CAS  Google Scholar 

  39. Berger CL, Goodwin G, Mendelsohn G, Eggleston JC, Abeloff MD, Aisner S, Baylin SB (1981) Endocrine-related biochemistry in the spectrum of human lung carcinoma. J Clin Endocrinol Metab 53:422–429

    Article  PubMed  CAS  Google Scholar 

  40. Baylin SB, Mendelsohn G, Weisburger WR, Gann DS, Eggleston JC (1979) Levels of histaminase and L-DOPA decarboxylase activity in the transition from C-cell hyperplasia to familial medullary thyroid carcinoma. Cancer 44:1315–1321

    PubMed  CAS  Google Scholar 

  41. Baylin SB, Abeloff MD, Goodwin G, Carney DN, Gazdar AF (1980) Activities of L-dopa decarboxylase and diamine oxidase (histaminase) in human lung cancers and decarboxylase as a marker for small (oat) cell cancer in cell culture. Cancer Res 40:1990–1994

    PubMed  CAS  Google Scholar 

  42. Baylin SB, Weisburger WR, Eggleston JC, Mendelsohn G, Beaven MA, Abeloff MD, Ettinger DS (1978) Variable content of histaminase, L-dopa decarboxylase and calcitonin in small-cell carcinoma of the lung. Biologic and clinical implications. N Engl J Med 299:105–110

    Google Scholar 

  43. Nagatsu T, Ichinose H, Kojima K, Kameya T, Shimase J, Kodama T, Shimosato Y (1985) Aromatic L-amino acid decarboxylase activities in human lung tissues: comparison between normal lung and lung carcinomas. Biochem Med 34:52–59

    PubMed  CAS  Google Scholar 

  44. Jequier E, Lovenberg W, Sjoerdsma A (1967) Tryptophan hydroxylase inhibition: the mechanism by which p-chlorophenylalanine depletes rat brain serotonin. Mol Pharmacol 3:274–278

    PubMed  CAS  Google Scholar 

  45. Lovenberg W, Jequier E, Sjoerdsma A (1967) Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science 155:217–219

    PubMed  CAS  Google Scholar 

  46. Hardman JG, Limbird LE, Gilman AG (eds) (2001) Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 10th edn. McGraw-Hill

  47. Fanburg BL, Lee SL (1997) A new role for an old molecule: serotonin as a mitogen. Am J Physiol 272:L795–806

    PubMed  CAS  Google Scholar 

  48. Bertaccini G, Chieppa S (1960) Urinary excretion of 5-hydroxyindoleacetic acid after removal of the large intestine in man. Lancet 1:881

    Google Scholar 

  49. Tonini M, Pace F (2006) Drugs acting on serotonin receptors for the treatment of functional GI disorders. Dig Dis 24:59–69

    PubMed  Google Scholar 

  50. Maton PN (1988) The carcinoid syndrome. Jama 260:1602–1605

    PubMed  CAS  Google Scholar 

  51. Davis Z, Moertel CG, McIlrath DC (1973) The malignant carcinoid syndrome. Surg Gynecol Obstet 137:637–644

    PubMed  CAS  Google Scholar 

  52. Feldman JM (1986) Urinary serotonin in the diagnosis of carcinoid tumors. Clin Chem 32:840–844

    PubMed  CAS  Google Scholar 

  53. Kema IP, de Vries EG, Schellings AM, Postmus PE, Muskiet FA (1992) Improved diagnosis of carcinoid tumors by measurement of platelet serotonin. Clin Chem 38:534–540

    PubMed  CAS  Google Scholar 

  54. Meijer WG, Kema IP, Volmer M, Willemse PH, de Vries EG (2000) Discriminating capacity of indole markers in the diagnosis of carcinoid tumors. Clin Chem 46:1588–1596

    PubMed  CAS  Google Scholar 

  55. Ishizuka J, Beauchamp RD, Townsend CM Jr, Greeley GH Jr, Thompson JC (1992) Receptor-mediated autocrine growth-stimulatory effect of 5-hydroxytryptamine on cultured human pancreatic carcinoid cells. J Cell Physiol 150:1–7

    PubMed  CAS  Google Scholar 

  56. Cattaneo MG, Fesce R, Vicentini LM (1995) Mitogenic effect of serotonin in human small cell lung carcinoma cells via both 5-HT1A and 5-HT1D receptors. Eur J Pharmacol 291:209–211

    PubMed  CAS  Google Scholar 

  57. Abrahamsson PA, Wadstrom LB, Alumets J, Falkmer S, Grimelius L (1987) Peptide-hormone- and serotonin-immunoreactive tumour cells in carcinoma of the prostate. Pathol Res Pract 182:298–307

    PubMed  CAS  Google Scholar 

  58. Dizeyi N, Bjartell A, Hedlund P, Tasken KA, Gadaleanu V, Abrahamsson PA (2005) Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol 47:895–900

    PubMed  CAS  Google Scholar 

  59. Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N, Abrahamsson PA (2004) Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 59:328–336

    PubMed  CAS  Google Scholar 

  60. Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    PubMed  CAS  Google Scholar 

  61. Eisenhofer G, Kopin IJ, Goldstein DS (2004) Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 56:331–349

    PubMed  CAS  Google Scholar 

  62. Jaeger CB, Teitelman G, Joh TH, Albert VR, Park DH, Reis DJ (1983) Some neurons of the rat central nervous system contain aromatic-L-amino-acid decarboxylase but not monoamines. Science 219:1233–1235

    PubMed  CAS  Google Scholar 

  63. Nagatsu I, Sakai M, Yoshida M, Nagatsu T (1988) Aromatic L-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord. Brain Res 475:91–102

    PubMed  CAS  Google Scholar 

  64. Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease. J Clin Invest 95:2458–2464

    Google Scholar 

  65. Lai CT, Yu PH (1997) Dopamine- and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem Pharmacol 53:363–372

    Google Scholar 

  66. Emdadul Haque M, Asanuma M, Higashi Y, Miyazaki I, Tanaka K, Ogawa N (2003) Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochim Biophys Acta 1619:39–52

    PubMed  CAS  Google Scholar 

  67. Drukarch B, van Muiswinkel FL (2000) Drug treatment of Parkinson’s disease. Time for phase II. Biochem Pharmacol 59:1023–1031

    Google Scholar 

  68. Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653

    PubMed  CAS  Google Scholar 

  69. Parsons PG (1985) Modification of dopa toxicity in human tumour cells. Biochem Pharmacol 34:1801–1807

    PubMed  CAS  Google Scholar 

  70. Basma AN, Morris EJ, Nicklas WJ, Geller HM (1995) L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 64:825–832

    Article  PubMed  CAS  Google Scholar 

  71. Miura T, Muraoka S, Fujimoto Y, Zhao K (2000) DNA damage induced by catechol derivatives. Chem Biol Interact 126:125–136

    PubMed  CAS  Google Scholar 

  72. Hastings TG, Zigmond MJ (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione. J Neurochem 63:1126–1132

    Article  PubMed  CAS  Google Scholar 

  73. Fornstedt B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25:451–454

    PubMed  CAS  Google Scholar 

  74. Kuhn DM, Arthur RE Jr (1999) L-DOPA-quinone inactivates tryptophan hydroxylase and converts the enzyme to a redox-cycling quinoprotein. Brain Res Mol Brain Res 73:78–84

    PubMed  CAS  Google Scholar 

  75. Kuhn DM, Arthur RE Jr, Thomas DM, Elferink LA (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J Neurochem 73:1309–1317

    PubMed  CAS  Google Scholar 

  76. Offen D, Ziv I, Panet H, Wasserman L, Stein R, Melamed E, Barzilai A (1997) Dopamine-induced apoptosis is inhibited in PC12 cells expressing Bcl-2. Cell Mol Neurobiol 17:289–304

    PubMed  CAS  Google Scholar 

  77. Jones DC, Gunasekar PG, Borowitz JL, Isom GE (2000) Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC12 cells. J Neurochem 74:2296–2304

    PubMed  CAS  Google Scholar 

  78. Weingarten P, Zhou QY (2001) Protection of intracellular dopamine cytotoxicity by dopamine disposition and metabolism factors. J Neurochem 77:776–785

    PubMed  CAS  Google Scholar 

  79. Ishibashi M, Fujisawa M, Furue H, Maeda Y, Fukayama M, Yamaji T (1994) Inhibition of growth of human small cell lung cancer by bromocriptine. Cancer Res 54:3442–3446

    PubMed  CAS  Google Scholar 

  80. Farrell WE, Clark AJ, Stewart MF, Crosby SR, White A (1992) Bromocriptine inhibits pro-opiomelanocortin mRNA and ACTH precursor secretion in small cell lung cancer cell lines. J Clin Invest 90:705–710

    Article  PubMed  CAS  Google Scholar 

  81. Usdin E, Sandler M (1976) Trace amines and the brain. Dekker, New York

    Google Scholar 

  82. Zhu MY, Juorio AV (1995) Aromatic L-amino acid decarboxylase: biological characterization and functional role. Gen Pharmacol 26:681–696

    PubMed  CAS  Google Scholar 

  83. Paterson IA, Juorio AV, Boulton AA (1990) 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J Neurochem 55:1827–1837

    PubMed  CAS  Google Scholar 

  84. Juorio AV, Paterson IA (1990) Tryptamine may couple dopaminergic and serotonergic transmission in the brain. Gen Pharmacol 21:613–616

    PubMed  CAS  Google Scholar 

  85. Jones RS, Boulton AA (1980) Interactions between p-tyramine, m-tyramine, or beta-phenylethylamine and dopamine on single neurones in the cortex and caudate nucleus of the rat. Can J Physiol Pharmacol 58:222–227

    PubMed  CAS  Google Scholar 

  86. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S et al (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98:8966–8971

    PubMed  CAS  Google Scholar 

  87. Falus A, Meretey K (1992) Histamine: an early messenger in inflammatory and immune reactions. Immunol Today 13:154–156

    PubMed  CAS  Google Scholar 

  88. Champion HC, Bivalacqua TJ, Lambert DG, Abassi RA, Kadowitz PJ (1999) Analysis of vasoconstrictor responses to histamine in the hindlimb vascular bed of the rabbit. Am J Physiol 277:R1179–1187

    PubMed  CAS  Google Scholar 

  89. Hersey SJ, Sachs G (1995) Gastric acid secretion. Physiol Rev 75:155–189

    Google Scholar 

  90. Matsuki Y, Tanimoto A, Hamada T, Sasaguri Y (2003) Histidine decarboxylase expression as a new sensitive and specific marker for small cell lung carcinoma. Mod Pathol 16:72–78

    PubMed  Google Scholar 

  91. Graff L, Frungieri M, Zanner R, Pohlinger A, Prinz C, Gratzl M (2002) Expression of histidine decarboxylase and synthesis of histamine by human small cell lung carcinoma. Am J Pathol 160:1561–1565

    PubMed  CAS  Google Scholar 

  92. Rivera ES, Cricco GP, Engel NI, Fitzsimons CP, Martin GA, Bergoc RM (2000) Histamine as an autocrine growth factor: an unusual role for a widespread mediator. Semin Cancer Biol 10:15–23

    PubMed  CAS  Google Scholar 

  93. Tomita K, Okabe S (2005) Exogenous histamine stimulates colorectal cancer implant growth via immunosuppression in mice. J Pharmacol Sci 97:116–123

    PubMed  CAS  Google Scholar 

  94. Seiler N (2004) Catabolism of polyamines. Amino Acids 26:217–233

    PubMed  CAS  Google Scholar 

  95. Bevec D, Hauber J (1997) Eukaryotic initiation factor 5A activity and HIV-1 Rev function. Biol Signals 6:124–133

    PubMed  CAS  Google Scholar 

  96. Zuk D, Jacobson A (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. Embo J 17:2914–2925

    PubMed  CAS  Google Scholar 

  97. Park MH, Lee YB, Joe YA (1997) Hypusine is essential for eukaryotic cell proliferation. Biol Signals 6:115–123

    PubMed  CAS  Google Scholar 

  98. Cohen SS (1998) A guide to the polyamines. Oxford University Press, New York

    Google Scholar 

  99. Young L, Salomon R, Au W, Allan C, Russell P, Dong Q (2006) Ornithine decarboxylase (ODC) expression pattern in human prostate tissues and ODC transgenic mice. J Histochem Cytochem 54:223–229

    PubMed  CAS  Google Scholar 

  100. Canizares F, Salinas J, de las Heras M, Diaz J, Tovar I, Martinez P, Penafiel R (1999) Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: correlation with clinicopathologic parameters. Clin Cancer Res 5:2035–2041

    PubMed  CAS  Google Scholar 

  101. Giardiello FM, Hamilton SR, Hylind LM, Yang VW, Tamez P, Casero RA Jr (1997) Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res 57:199–201

    PubMed  CAS  Google Scholar 

  102. Subhi AL, Tang, B, Balsara BR, Altomare DA, Testa JR, Cooper HS, Hoffman JP, Meropol NJ, Kruger WD (2004) Loss of methylthioadenosine phosphorylase and elevated ornithine decarboxylase is common in pancreatic cancer. Clin Cancer Res 10:7290–7296

    Google Scholar 

  103. Townsend CM Jr, Ishizuka J, Thompson JC (1993) Studies of growth regulation in a neuroendocrine cell line. Acta Oncol 32:125–130

    PubMed  Google Scholar 

  104. Litvak DA, Papaconstantinou HT, Ko TC, Townsend CM Jr (1998) A novel cytotoxic agent for human carcinoid tumors. Surgery 124:1071–1076

    PubMed  CAS  Google Scholar 

  105. Sjoholm A, Bucht E, Theodorsson E, Larsson R, Nygren P (1994) Polyamines regulate human medullary thyroid carcinoma TT-cell proliferation and secretion of calcitonin and calcitonin gene-related peptide. Mol Cell Endocrinol 103:89–94

    PubMed  CAS  Google Scholar 

  106. Luk GD, Goodwin G, Marton LJ, Baylin SB (1981) Polyamines are necessary for the survival of human small-cell lung carcinoma in culture. Proc Natl Acad Sci USA 78:2355–2358

    PubMed  CAS  Google Scholar 

  107. Luk GD, Abeloff MD, Griffin CA, Baylin SB (1983) Successful treatment with DL-alpha-difluoromethylornithine in established human small cell variant lung carcinoma implants in athymic mice. Cancer Res 43:4239–4243

    PubMed  CAS  Google Scholar 

  108. Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    PubMed  CAS  Google Scholar 

  109. Kataoka Y, Gutman Y, Guidotti A, Panula P, Wroblewski J, Cosenza-Murphy D, Wu JY, Costa E (1984) Intrinsic GABAergic system of adrenal chromaffin cells. Proc Natl Acad Sci USA 81:3218–3222

    PubMed  CAS  Google Scholar 

  110. Wang FY, Zhu RM, Maemura K, Hirata I, Katsu K, Watanabe M (2006) Expression of gamma-aminobutyric acid and glutamic acid decarboxylases in rat descending colon and their relation to epithelial differentiation. Chin J Dig Dis 7:103–108

    PubMed  CAS  Google Scholar 

  111. Park YD, Cui ZY, Wu G, Park HS, Park HJ (2006) Gamma-aminobutyric acid secreted from islet beta-cells modulates exocrine secretion in rat pancreas. World J Gastroenterol 12:3026–3030

    PubMed  CAS  Google Scholar 

  112. Sorenson RL, Garry DG, Brelje TC (1991) Structural and functional considerations of GABA in islets of Langerhans. Beta-cells and nerves. Diabetes 40:1365–1374

    PubMed  CAS  Google Scholar 

  113. Novotny WF, Chassande O, Baker M, Lazdunski M, Barbry P (1994) Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. J Biol Chem 269:9921–9925

    PubMed  CAS  Google Scholar 

  114. Hardt J, Larsson LI, Hougaard DM (2000) Immunocytochemical evidence suggesting that diamine oxidase catalyzes biosynthesis of gamma-aminobutyric acid in antropyloric gastrin cells. J Histochem Cytochem 48:839–846

    PubMed  CAS  Google Scholar 

  115. Hougaard DM, Houen G, Larsson LI (1992) Regulation of gastric mucosal diamine oxidase activity by gastrin. FEBS Lett 307:135–138

    PubMed  CAS  Google Scholar 

  116. Baylin SB, Abeloff MD, Wieman KC, Tomford JW, Ettinger DS (1975) Elevated histaminase (diamine oxidase) activity in small-cell carcinoma of the lung. N Engl J Med 293:1286–1290

    Article  PubMed  CAS  Google Scholar 

  117. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  CAS  Google Scholar 

  118. Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307

    PubMed  CAS  Google Scholar 

  119. ter Kuile BH, Westerhoff HV (2001) Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171

    Google Scholar 

  120. Mendes P, Kell DB, Westerhoff HV (1996) Why and when channelling can decrease pool size at constant net flux in a simple dynamic channel. Biochim Biophys Acta 1289:175–186

    PubMed  Google Scholar 

  121. Fell D (1996) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  122. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    PubMed  CAS  Google Scholar 

  123. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    PubMed  CAS  Google Scholar 

  124. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    PubMed  CAS  Google Scholar 

  125. Hasegawa T, Wada K, Hiyama E, Masujima T (2006) Pretreatment and one-shot separating analysis of whole catecholamine metabolites in plasma by using LC/MS. Anal Bioanal Chem 385:814–820

    PubMed  CAS  Google Scholar 

  126. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307

    PubMed  CAS  Google Scholar 

  127. Alpert AJ, Shukla M, Shukla AK, Zieske LR, Yuen SW, Ferguson MA, Mehlert A, Pauly M, Orlando, R (1994) Hydrophilic-interaction chromatography of complex carbohydrates. J Chromatogr A 676:191–122

    PubMed  CAS  Google Scholar 

  128. Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24:223–231

    PubMed  CAS  Google Scholar 

  129. Hughey CA, Rodgers RP, Marshall AG (2002) Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal Chem 74:4145–4149

    PubMed  CAS  Google Scholar 

  130. Tunnicliff G (1998) Pharmacology and function of imidazole 4-acetic acid in brain. Gen Pharmacol 31:503–509

    PubMed  CAS  Google Scholar 

  131. de Melo MP, Curi TC, Curi R, Di Mascio P, Cilento G (1997) Peroxidase activity may play a role in the cytotoxic effect of indole acetic acid. Photochem Photobiol 65:338–341

    Google Scholar 

  132. Ippolito JE, Merritt ME, Backhed F, Moulder KL, Mennerick S, Manchester JK, Gammon ST, Piwnica-Worms D, Gordon JI (2006) Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers. Proc Natl Acad Sci USA 103:12505–12510

    PubMed  CAS  Google Scholar 

  133. Lehnhardt FG, Rohn G, Ernestus RI, Grune M, Hoehn M (2001) 1H- and (31)P-MR spectroscopy of primary and recurrent human brain tumors in vitro: malignancy-characteristic profiles of water soluble and lipophilic spectral components. NMR Biomed 14:307–317

    PubMed  CAS  Google Scholar 

  134. Mahon MM, deSouza NM, Dina R, Soutter WP, McIndoe GA, Williams AD, Cox IJ (2004) Preinvasive and invasive cervical cancer: an ex vivo proton magic angle spinning magnetic resonance spectroscopy study. NMR Biomed 17:144–153

    Google Scholar 

  135. Martinez-Bisbal MC, Marti-Bonmati L, Piquer J, Revert A, Ferrer P, Llacer JL, Piotto M, Assemat O, Celda B (2004) 1H and 13C HR-MAS spectroscopy of intact biopsy samples ex vivo and in vivo 1H MRS study of human high grade gliomas. NMR Biomed 17:191–205

    PubMed  CAS  Google Scholar 

  136. Swanson MG, Vigneron DB, Tabatabai ZL, Males RG, Schmitt L, Carroll PR, James JK, Hurd RE, Kurhanewicz J (2003) Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 50:944–954

    PubMed  CAS  Google Scholar 

  137. Xu D, Dhillon AS, Abelmann A, Croft K, Peters TJ, Palmer TN (1998) Alcohol-related diols cause acute insulin resistance in vivo. Metabolism 47:1180–1186

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Ippolito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ippolito, J.E. Current concepts in neuroendocrine cancer metabolism. Pituitary 9, 193–202 (2006). https://doi.org/10.1007/s11102-006-0264-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-006-0264-3

Keywords

Navigation