Skip to main content
Log in

Exploiting natural variation for accelerating discoveries in plant specialized metabolism

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Plants have the capacity to produce a staggering array of chemically diverse low molecular weight compounds called specialized metabolites. Though they are non-essential for basic cell activities, these molecules are characterized by their role as integral enhancers of plant fitness, and have distinct biological functions including defense against herbivory, immunity, pollinator attraction, molecular signaling, and abiotic stress tolerance. The chemicals are of particular interest because of their pharmacological, industrial, and agricultural usefulness. The inter- or intraspecies variation in the production of specialized metabolites has been widely observed and found to be largely genetically controlled. The natural genetic variation can be used to help identify biosynthetic and regulatory genes, elucidate mechanistic properties of gene function and gene regulation, and explore evolutionary and ecological questions. Recent advances in sequencing and data mining technologies have facilitated the integration of population genetics tools such as quantitative trait loci (QTL) mapping and genome wide association (GWA) with metabolite and/or gene expression profiling to exploit the natural variation for making new discoveries in the model plant Arabidopsis thaliana, as well as in more agriculturally relevant species. Here we highlight key discoveries that were catalyzed by taking advantage of naturally occurring variation, and comment on technologies and resources employed by this approach, in hopes of providing phytochemists an archetype for harnessing the power of natural variation to accelerate discoveries in plant specialized metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

GWA:

Genome-wide association

DHBA:

Dihydroxybenzoic acid

DMADP:

Dimethylallyl diphosphate

DMNT:

(E)-3,8-dimethyl-1,4,7-nonatriene

IDP:

Isopentyl diphosphate

MEP:

Methyl-erythritol-phosphate

QTL:

Quantitative trait locus

RFLP:

Restriction fragment length polymorphism

RIL:

Recombinant inbred line

SNP:

Single nucleotide polymorphism

TMTT:

(E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene

UGT:

UDP-glycosyltransferase

References

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Andrade J, Becker C et al (2016) 1,135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481–491

    Article  CAS  Google Scholar 

  • Alseekh S, Tohge T, Wendenberg R et al (2015) Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:485–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki Y, Okamura Y, Tadaka S et al (2016) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57:e5

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atwell S, Huang YS, Vilhjálmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bac-Molenaar J, Fradin EF, Rienstra JA et al (2015) GWA mapping of anthocyanin accumulation reveals balancing selection of MYB90 in Arabidopsis thaliana. PLOS ONE 10:e0143212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Badouin H, Gouzy J, Grassa CJ et al (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148–152

    Article  CAS  PubMed  Google Scholar 

  • Battilana J, Emanuelli F, Gambino G et al (2011) Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284 N on Muscat flavour formation. J Exp Bot 62:5497–5508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S et al (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beyer P, Al-Babili S, Ye X et al (2002) Golden rice: introducing the ß-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin a deficiency. J Nutr 132:506S–510S

    Article  PubMed  Google Scholar 

  • Bolger ME, Weisshaar B, Scholz U et al (2014) Plant genome sequencing—applications for crop improvement. Curr Opin Biotechnol 26:31–37

    Article  CAS  PubMed  Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Brotman Y, Riewe D, Lisec J et al (2011) Identification of enzymatic and regulatory genes of plant metabolism through QTL analysis in Arabidopsis. J Plant Physiol 168:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y et al (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers KJ, Vela JP, Peng F et al (2014) Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus). Plant J 80:1031–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Carlisle CM, Blond C et al (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genom 8:212

    Article  CAS  Google Scholar 

  • Chan EK, Rowe HC, Kliebenstein DJ (2010) Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 185:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan EKF, Rowe HC, Corwin JA et al (2011) Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol 9:e1001125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chander S, Guo YQ, Yang XH et al (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–233

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Bowman JL, DeJohn AW et al (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci USA 85:6856–6860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li X (2016) Identification of a residue responsible for UDP-sugar donor selectivity of a dihydroxybenzoic acid glycosyltransferase from Arabidopsis natural accessions. Plant J. doi:10.1111/tpj.13271

    Google Scholar 

  • Chen W, Gao Y, Xie W et al (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Chess SK, Raguso RA, Lebuhn G (2008) Geographic divergence in floral morphology and scent in Linanthus dichotomus (Polemoniaceae). Am J Bot 95:1652–1659

    Article  PubMed  Google Scholar 

  • Chiu L, Zhou X, Burke S et al (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Daccord N, Celton JM, Linsmith G et al (2017) High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. doi:10.1038/ng.3886

    PubMed  Google Scholar 

  • De Lorenzis G, Squadrito M, Brancadoro L et al (2015) Zibibbo nero characterization, a red-wine grape revertant of muscat of Alexandria. Mol Biotechnol 57:265–274

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Salim V, Atsumi SM et al (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661

    Article  PubMed  CAS  Google Scholar 

  • de Quiros HC, Magrath R, McCallum D et al (2000) α-Keto acid elongation and glucosinolate biosynthesis in Arabidopsis thaliana. Theor Appl Genet 101:429–437

    Article  Google Scholar 

  • Dong X, Gao Y, Chen W et al (2015) Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice. Mol Plant 8:111–121

    Article  CAS  PubMed  Google Scholar 

  • Drew DP, Andersen TB, Sweetman C et al (2016) Two key polymorphisms in a newly discovered allele of the Vitis vinifera TPS24 gene are responsible for the production of the rotundone precursor α-guaiene. J Exp Bot 67:799–808  

    Article  CAS  PubMed  Google Scholar 

  • Druka A, Potokina E, Luo Z et al (2010) Expression quantitative trait loci analysis in plants. Plant Biotechnol J 8:10–27

    Article  CAS  PubMed  Google Scholar 

  • Du B, Zhang W, Liu B et al (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM et al (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelli F, Battilana J, Costantini L et al (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J et al (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Brendolise C, Chagne D et al (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Long Y, Shi L et al (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  CAS  PubMed  Google Scholar 

  • Ferrer J, Austin MB, Stewart C et al (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C et al (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francisco M, Joseph B, Caligagan H et al (2016) Genome wide association mapping in Arabidopsis thaliana identifies novel genes involved in linking allyl glucosinolate to altered biomass and defense. Front Plant Sci 7:1010

    PubMed  PubMed Central  Google Scholar 

  • Fu Z, Chai Y, Zhou Y et al (2013) Natural variation in the sequence of PSY1 and frequency of favorable polymorphisms among tropical and temperate maize germplasm. Theor Appl Genet 126:923–935

    Article  CAS  PubMed  Google Scholar 

  • Gabruk M, Habina I, Kruk J et al (2016) Natural variation in tocochromanols content in Arabidopsis thaliana accessions—the effect of temperature and light intensity. Physiol Plant 157:147–160

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Lavid N, Zubieta C et al (2002) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14:505–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giamoustaris A, Mithen R (1996) Genetics of aliphatic glucosinolates. IV. Side-chain modification in Brassica oleracea. Theor Appl Genet 93:1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Jorge S, Ha S-H, Magallanes-Lundback M et al (2013) CAROTENOID CLEAVAGE DIOXYGENASE4 is a negative regulator of β-carotene content in Arabidopsis seeds. Plant Cell 25(12):4812–4826

  • Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M et al (2016) ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing seed. Plant Physiol 171(3):1837–1851

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzales-Vigil E, Hufnagel DE, Kim J et al (2012) Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Plant J 71:921–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall C, McCallum D, Prescott A et al (2001) Biochemical genetics of glucosinolate modification in Arabidopsis and Brassica. Theor Appl Genet 102:369–374

    Article  CAS  Google Scholar 

  • Harborne JB (1999) Classes and functions of secondary products from plants. In: Walton N, Brown D (eds) Chemicals from plants. Imperial College Press, London, pp 1–25

    Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    Article  CAS  PubMed  Google Scholar 

  • Horton MW, Hancock AM, Huang YS et al (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet 44:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huala E, Dickerman AW, Garcia-Hernandez M et al (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29:102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z et al (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima Y, Davidovich-Rikanati R, Fridman E et al (2004a) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136:3724–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iijima Y, Gang DR, Fridman E et al (2004b) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara H, Tohge T, Viehöver P et al (2016) Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6. J Exp Bot 67:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Jensen LM, Halkier BA, Burow M (2014) How to discover a metabolic pathway? An update on gene identification in aliphatic glucosinolate biosynthesis, regulation and transport. Biol Chem 395:529–543

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Peluso P, Shi J et al (2017) Improved maize reference genome with single-molecule technologies. Nature. doi:10.1038/nature22971

    Google Scholar 

  • Kage U, Karre S, Kushalappa AC et al (2017) Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL. Plant Biotechnol J 15:447–457

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Gonzales-Vigil E, Matsuba Y et al (2014) Determination of residues responsible for substrate and product specificity of Solanum habrochaites short-chain cis-prenyltransferases. Plant Physiol 164:80–91

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJ, Fu J, De Vos CR et al (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  CAS  PubMed  Google Scholar 

  • Kieran PM, Fau MP, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59(1):39–52

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Matsuba Y, Ning J et al (2014) Analysis of natural and induced variation in tomato glandular trichome flavonoids identifies a gene not present in the reference genome. Plant Cell 26:3272–3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant, Cell Environ 27:675–684

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2009a) A quantitative genetics and ecological model system: understanding the aliphatic glucosinolate biosynthetic network via QTLs. Phytochem Rev 8:243–254

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2009b) Use of secondary metabolite variation in crop improvement. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products: synthesis, function, and application. Springer, New York, pp 83–95

    Chapter  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P et al (2001a) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ, Lambrix VM, Reichelt M et al (2001b) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001c) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159:359–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K et al (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Köllner TG, Schnee C, Gershenzon J et al (2004) The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 16:1115–1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Köllner TG, Held M, Lenk C et al (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14:246–251

    Article  CAS  PubMed  Google Scholar 

  • Kroymann J, Textor S, Tokuhisa JG et al (2001) A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol 127:1077–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkel BN (1996) A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 12:63–69

    Article  CAS  PubMed  Google Scholar 

  • Laitinen RAE, Schneeberger K, Jelly NS et al (2010) Identification of a spontaneous frame shift mutation in a nonreference Arabidopsis accession using whole genome sequencing. Plant Physiol 153:652–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin JC, Young N, Prigge M et al (1996) The control of trichome spacing and number in Arabidopsis. Development 122:997–1005

    CAS  PubMed  Google Scholar 

  • Lawrence W, Price J (1940) The genetics and chemistry of flower colour variation. Biol Rev 15:35–57

    Article  CAS  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bergelson J, Chapple C (2010) The Arabidopsis accession Pna-10 is a naturally occurring sng1 deletion mutant. Mol Plant 3:91–100

    Article  CAS  PubMed  Google Scholar 

  • Li H, Peng Z, Yang X et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50

    Article  CAS  PubMed  Google Scholar 

  • Li X, Svedin E, Mo H et al (2014) Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana. Genetics 198:1267–1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Gore MA, Magallanes-Lundback M et al (2013) Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3 Genes Genomes Genet 3:1287–1299

    Google Scholar 

  • Louveau T, Leitao C, Green S et al (2011) Predicting the substrate specificity of a glycosyltransferase implicated in the production of phenolic volatiles in tomato fruit. FEBS J 278:390–400

    Article  CAS  PubMed  Google Scholar 

  • Luo J (2015) Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24:31–38

    Article  CAS  PubMed  Google Scholar 

  • Magrath R, Bano F, Morgner M et al (1994) Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72:290–299

    Article  CAS  Google Scholar 

  • Martin DM, Aubourg S, Schouwey MB et al (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matasci N, Hung L-H, Yan Z et al (2014) Data access for the 1,000 plants (1KP) project. Gigascience 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuno M, Compagnon V, Schoch GA et al (2009) Evolution of a novel phenolic pathway for pollen development. Science 325:1688–1692

    Article  CAS  PubMed  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mithen R, Clarke J, Lister C et al (1995) Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74:210–215

    Article  CAS  Google Scholar 

  • Miura K, Ashikari M, Matsuoka M (2011) The role of QTLs in the breeding of high-yielding rice. Trends Plant Sci 16:319–326

    Article  CAS  PubMed  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35

    Article  CAS  Google Scholar 

  • Moore BD, Andrew RL, Külheim C et al (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis: ecotypic variation and copper-sensitive mutants. Plant Physiol 108:29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeau JH, Frankel WN (2000) The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 25:381–384

    Article  CAS  PubMed  Google Scholar 

  • Nam HG, Giraudat J, Den Boer B et al (1989) Restriction fragment length polymorphism linkage map of Arabidopsis thaliana. Plant Cell 1:699–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niovi Jones K, Reithel JS (2001) Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M et al (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkin I, Magrath R, Keith D et al (1994) Genetics of aliphatic glucosinolates. II. Hydroxylation of alkenyl glucosinolates in Brassica napus. Heredity 72:594–598

    Article  CAS  Google Scholar 

  • Peng M, Gao Y, Chen W et al (2016) Evolutionarily distinct BAHD N-acyltransferases are responsible for natural variation of aromatic amine conjugates in rice. Plant Cell 28:1533–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  PubMed  Google Scholar 

  • Pieper U, Webb BM, Dong GQ et al (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42:D336–D346

    Article  CAS  PubMed  Google Scholar 

  • Prasad KV, Song BH, Olson-Manning C et al (2012) A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337:1081–1084

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Liu X, Shen D et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Quadrana L, Almeida J, Asis R et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ribnicky DM, Komarnytsky S et al (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20:522–531

    Article  CAS  PubMed  Google Scholar 

  • Richter A, Schaff C, Zhang Z et al (2016) Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. Plant Cell 28:2651–2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Bermejo E, Castrillo G, del Llano B et al (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617

    Article  PubMed  CAS  Google Scholar 

  • Schmid KJ, Törjék O, Meyer R et al (2006) Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet 112:1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Ma Y, Zhou Y et al (2014) Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346:1084–1088

    Article  CAS  PubMed  Google Scholar 

  • Sharma RK, Griffing B, Scholl RL (1979) Variations among races of Arabidopsis thaliana (L.) heynh for survival in limited carbon dioxide. Theor Appl Genet 54:11–15

    CAS  PubMed  Google Scholar 

  • Shindo C, Aranzana MJ, Lister C et al (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138:1163–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snoeren TAL, Kappers IF, Broekgaarden C et al (2010) Natural variation in herbivore-induced volatiles in Arabidopsis thaliana. J Exp Bot 61:3041–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis NE, Kliebenstein DJ (2015) Natural variation of plant metabolism: genetic mechanisms, interpretive caveats, and evolutionary and mechanistic insights. Plant Physiol 169:1456–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sønderby IE, Hansen BG, Bjarnholt N et al (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2:e1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  CAS  Google Scholar 

  • Strauch RC, Svedin E, Dilkes B et al (2015) Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana. Proc Natl Acad Sci USA 112:11726–11731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tattersall DB, Bak S, Jones PR et al (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293:1826

    Article  CAS  PubMed  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L et al (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Textor S, Bartram S, Kroymann J et al (2004) Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta 218:1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Chen F, Petri J et al (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toroser D, Thormann CE, Osborn TC et al (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). Theor Appl Genet 91:802–808

    Article  CAS  PubMed  Google Scholar 

  • Toufighi K, Brady SM, Austin R et al (2005) The botany array resource: e-northerns, expression angling, and promoter analyses. Plant J 43:153–163

    Article  CAS  PubMed  Google Scholar 

  • Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3:200–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Verhoeven DT, Verhagen H, Goldbohm RA et al (1997) A review of mechanisms underlying anticarcinogenicity by brassica vegetables. Chem Biol Interact 103:79–129

    Article  CAS  PubMed  Google Scholar 

  • Verpoorte R (1998) Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today 3:232–238

    Article  CAS  Google Scholar 

  • Verpoorte R (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J Pharm Pharmacol 52:253–262

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF, Cummings MP, Koniczny A et al (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Lee E, Bogs J et al (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  CAS  PubMed  Google Scholar 

  • Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol 158:2–22

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2006) EMS mutagenesis of Arabidopsis seed. CSH Protoc. doi:10.1101/pdb.prot4621

    Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen W, Li D, Li X et al (2014) Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun. doi:10.1038/ncomms4438

    Google Scholar 

  • Werij JS, Kloosterman B, Celis-Gamboa C et al (2007) Unravelling enzymatic discoloration in potato through a combined approach of candidate genes, QTL, and expression analysis. Theor Appl Genet 115:245–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West MAL, Kim K, Kliebenstein DJ et al (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whibley AC, Langlade NB, Andalo C et al (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966

    Article  CAS  PubMed  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  CAS  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET et al (2004) QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Zhang Y, Chen X et al (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lechowicz MJ (1995) Responses to CO2 enrichment by two genotypes of Arabidopsis thaliana differing in their sensitivity to nutrient availability. Ann Bot 75:491–499

    Article  Google Scholar 

  • Zhang H, Mittal N, Leamy LJ et al (2017) Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    Article  PubMed  Google Scholar 

  • Zhao Y, Huang J, Wang Z et al (2016) Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA 113:12850–12855

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou Y, Han Y, Li Z et al (2012) ZmcrtRB3 encodes a carotenoid hydroxylase that affects the accumulation of α-carotene in maize kernel. J Integr Plant Biol 54:260–269

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Ma Y, Zeng J et al (2016) Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2:16183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support by the USDA National Institute of Food and Agriculture, Hatch project 227202 (NC02371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wager, A., Li, X. Exploiting natural variation for accelerating discoveries in plant specialized metabolism. Phytochem Rev 17, 17–36 (2018). https://doi.org/10.1007/s11101-017-9524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9524-2

Keywords

Navigation