Skip to main content
Log in

Computational Fluid Dynamics (CFD) Simulations of Spray Drying: Linking Drying Parameters with Experimental Aerosolization Performance

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to develop a new computational fluid dynamics (CFD)-based model of the complex transport and droplet drying kinetics within a laboratory-scale spray dryer, and relate CFD-predicted drying parameters to powder aerosolization metrics from a reference dry powder inhaler (DPI).

Methods

A CFD model of the Buchi Nano Spray Dryer B-90 was developed that captured spray dryer conditions from a previous experimental study producing excipient enhanced growth powders with L-leucine as a dispersion enhancer. The CFD model accounted for two-way heat and mass transfer coupling between the phases and turbulent flow created by acoustic streaming from the mesh nebulizer. CFD-based drying parameters were averaged across all droplets in each spray dryer case and included droplet time-averaged drying rate (κavg), maximum instantaneous drying rate (κmax) and precipitation window.

Results

CFD results highlighted a chaotic drying environment in which time-averaged droplet drying rates (κavg) for each spray dryer case had high variability with coefficients of variation in the range of 60–70%. Maximum instantaneous droplet drying rates (κmax) were discovered that were two orders of magnitude above time-averaged drying rates. Comparing CFD-predicted drying parameters with experimentally determined mass median aerodynamic diameters (MMAD) and emitted doses (ED) from a reference DPI produced strong linear correlations with coefficients of determination as high as R2 = 0.98.

Conclusions

For the spray dryer system and conditions considered, reducing the CFD-predicted maximum drying rate experienced by droplets improved the aerosolization performance (both MMAD and ED) when the powders were aerosolized with a reference DPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

AS:

Albuterol sulfate

CFD:

Computational fluid dynamics

CV:

Coefficient of variation

DPI:

Dry powder inhaler

ED:

Emitted dose

EEG:

Excipient enhanced growth

HPLC:

High performance liquid chromatography

HPMC:

Hydroxypropyl methylcellulose

ISR:

Time integral of saturation ratio

LPM:

Liters per minute

LRN:

Low Reynolds number

MMAD:

Mass median aerodynamic diameters

MN:

Mannitol

MT:

Mouth-throat

NGI:

Next Generation Impactor

RH:

Relative humidity

RMM:

Rapid mixing model

SD:

Standard deviation

SR:

Saturation ratio

T:

Temperature

References

  1. Weers JG, Miller DP. Formulation design of dry powders for inhalation. J Pharm Sci. 2015;104:3259–88.

    CAS  PubMed  Google Scholar 

  2. Chan HK, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev. 2011;63:406–16.

    CAS  PubMed  Google Scholar 

  3. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022.

    CAS  PubMed  Google Scholar 

  4. Bird RB, Steward WE, Lightfoot EN. Transport phenomena. New York: John Wiley & Sons; 2002.

    Google Scholar 

  5. Masters K. Spray drying—an Introduction to principles. Leonard Hill: Operational Practice and Applications; 1972.

    Google Scholar 

  6. Finlay WH. The mechanics of inhaled pharmaceutical aerosols. San Diego: Academic Press; 2001.

    Google Scholar 

  7. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38:728–46.

    CAS  Google Scholar 

  8. Hoe S, Ivey JW, Boraey MA, Shamsaddini-Shahrbabak A, Javaheri E, Matinkhoo S, et al. Use of a fundamental approach to spray-drying formulation design to facilitate the development of multi-component dry powder aerosols for respiratory drug delivery. Pharm Res. 2014;31:449–65.

    CAS  PubMed  Google Scholar 

  9. Chan H-K. Dry powder aerosol drug delivery - Opportunities for colloid and surface scientists. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2006;284–285:50–55.

  10. Vicente J, Pinto J, Menezes J, Gaspar F. Fundamental analysis of particle formation in spray drying. Powder Technol. 2013;247:1–7.

    CAS  Google Scholar 

  11. Weers JG, Son Y-J, Glusker M, Haynes A, Huang D, Kadrichu N, et al. Idealhalers versus realhalers: is it possible to bypass deposition in the upper respiratory tract? Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2019;32:55–69.

    PubMed  Google Scholar 

  12. Delvadia R, Hindle M, Longest PW, Byron PR. In vitro tests for aerosol deposition II: IVIVCs for different dry powder inhalers in normal adults. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2013;26:138–44.

    CAS  PubMed  Google Scholar 

  13. Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation, and performance. Respir Med. 2002;96:293–304.

    CAS  PubMed  Google Scholar 

  14. Son Y-J, Longest PW, Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance. Int J Pharm. 2013;443:137–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Son Y-J, Longest PW, Tian G, Hindle M. Evaluation and modification of commercial dry powder inhalers for the aerosolization of submicrometer excipient enhanced growth (EEG) formulation. Eur J Pharm Sci. 2013;49:390–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Behara SRB, Longest PW, Farkas DR, Hindle M. Development and comparison of new high-efficiency dry powder inhalers for carrier-free formulations. J Pharm Sci. 2014;103:465–77.

    CAS  PubMed  Google Scholar 

  17. Farkas D, Hindle M, Longest PW. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy. Int J Pharm. 2018;546:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Farkas D, Hindle M, Longest PW. Efficient nose-to-lung aerosol delivery with an inline DPI requiring low actuation air volume. Pharm Res. 2018;35:194.

    PubMed  PubMed Central  Google Scholar 

  19. Farkas D, Hindle M, Bonasera S, Bass K, and Longest W. Development of an inline dry powder inhaler for oral or trans-nasal aerosol administration to children. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2019;DOI: https://doi.org/10.1089/jamp.2019.1540

  20. Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphereTM technology. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2011;24:175–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng A, Boraey M, Gwin M, Finlay P, Kuehl P, Vehring R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int J Pharm. 2011;409:156–63.

    CAS  PubMed  Google Scholar 

  22. Baldelli A, Vehring R. Control of the radial distribution of chemical components in spray-dried crystalline microparticles. Aerosol Sci Technol. 2016;50:1130–42.

    CAS  Google Scholar 

  23. Son Y-J, Longest PW, and Hindle M. Aerosolization characteristics of dry powder inhaler formulations for the enhanced excipient growth application: Effect of spray drying conditions. Respiratory Drug Delivery 2012. 2012;3:899–902.

  24. Baldelli A, Power RM, Miles RE, Reid JP, Vehring R. Effect of crystallization kinetics on the properties of spray-dried microparticles. Aerosol Sci Technol. 2016;50:693–704.

    CAS  Google Scholar 

  25. Baldelli A, Boraey MA, Nobes DS, Vehring R. Analysis of the particle formation process of structured microparticles. Mol Pharm. 2015;12:2562–73.

    CAS  PubMed  Google Scholar 

  26. Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer-Verlag; 1999.

    Google Scholar 

  27. Longest PW, Spence BM, Holbrook LT, Mossi KM, Son Y-J, Hindle M. Production of inhalable submicrometer aerosols from conventional mesh nebulizers for improved respiratory drug delivery. J Aerosol Sci. 2012;51:66–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Longest PW, Hindle M. Condensational growth of combination drug-excipient submicrometer particles: comparison of CFD predictions with experimental results. Pharm Res. 2012;29:707–21.

    CAS  PubMed  Google Scholar 

  29. Longest PW, Walenga RL, Son Y-J, Hindle M. High efficiency generation and delivery of aerosols through nasal cannula during noninvasive ventilation. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2013;26:266–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Poozesh S, Lu K, Marsac PJ. On the particle formation in spray drying process for bio-pharmaceutical applications: interrogating a new model via computational fluid dynamics. Int J Heat Mass Transf. 2018;122:863–76.

    CAS  Google Scholar 

  31. Ramachandran RP, Akbarzadeh M, Paliwal J, Cenkowski S. Computational fluid dynamics in drying process modelling—a technical review. Food Bioprocess Technol. 2018;11:271–92.

    Google Scholar 

  32. Longest PW, Tian G, Li X, Son Y-J, Hindle M. Performance of combination drug and hygroscopic excipient submicrometer particles from a softmist inhaler in a characteristic model of the airways. Ann Biomed Eng. 2012;40:2596–610.

    PubMed  PubMed Central  Google Scholar 

  33. Hindle M, Longest PW. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: evaluation of formulation and delivery device. J Pharm Pharmacol. 2012;64:1254–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian G, Longest PW, Li X, Hindle M. Targeting aerosol deposition to and within the lung airways using excipient enhanced growth. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2013;26:248–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmid K, Arpagaus C, Friess W. Evaluation of the Nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol. 2011;16:287–94.

    CAS  PubMed  Google Scholar 

  36. Zhang G, David A, Wiedmann TS. Performance of the vibrating membrane aerosol generation device: Aeroneb micropump nebulizer. Journal of Aerosol Medicine. 2007;20:408–16.

    CAS  PubMed  Google Scholar 

  37. Spence BM, Longest PW, Wei X, Dhapare S, and Hindle M. Development of a high flow nasal cannula (HFNC) and pharmaceutical aerosol combination device. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2019;DOI: https://doi.org/10.1089/jamp.2018.1488

  38. Ghazanfari T, Elhissi AMA, Ding Z, Taylor KMG. The influence of fluid physicochemical properties on vibrating-mesh nebulization. Int J Pharm. 2007;339:103–11.

    CAS  PubMed  Google Scholar 

  39. Nyborg WL. Acoustic streaming due to attenuated plane waves. The Journal of the Acoustical Society of America. 1953;25:68–75.

    Google Scholar 

  40. Trujillo FJ, Knoerzer K. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors. Ultrason Sonochem. 2011;18:1263–73.

    CAS  PubMed  Google Scholar 

  41. Wilcox DC. Turbulence modeling for CFD, 2nd Ed., DCW Industries, Inc., California, 1998.

  42. Longest PW, Hindle M, Das Choudhuri S, Byron PR. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci Technol. 2007;41:952–73.

    CAS  Google Scholar 

  43. Longest PW, Tian G, Delvadia R, Hindle M. Development of a stochastic individual path (SIP) model for predicting the deposition of pharmaceutical aerosols: effects of turbulence, polydisperse aerosol size, and evaluation of multiple lung lobes. Aerosol Sci Technol. 2012;46:1271–85.

    CAS  Google Scholar 

  44. Longest PW, Tian G, Walenga RL, Hindle M. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 2012;29:1670–88.

    CAS  PubMed  Google Scholar 

  45. Tian G, Longest PW, Su G, Walenga RL, Hindle M. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J Aerosol Sci. 2011;42:781–99.

    CAS  Google Scholar 

  46. Bird RB, Steward WE, Lightfoot EN. Transport phenomena. New York: John Wiley & Sons; 1960.

    Google Scholar 

  47. Green DW. Perry's chemical Engineers' handbook. New York: McGraw-Hill; 1997.

    Google Scholar 

  48. Vargaftik NB. Tables on Thermophysical properties of liquids and gases. Washington, DC: Hemisphere; 1975.

    Google Scholar 

  49. Vincenti WG, and Kruger CH. Physical Gas Dynamics, Robert E. Krieger Publishing Company, Inc., Malabar, 1986.

  50. Longest PW, Xi J. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Technol. 2007;41:380–97.

    CAS  Google Scholar 

  51. Vinchurkar S, Longest PW. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Computers and Fluids. 2008;37:317–31.

    Google Scholar 

  52. Gosman AD, Ioannides E. Aspects of computer simulation of liquid-fueled combustors. Journal of Energy. 1981;7:482–90.

    Google Scholar 

  53. Bass K, Longest PW. Recommendations for simulating microparticle deposition at conditions similar to the upper airways with two-equation turbulence models. J Aerosol Sci. 2018;119:31–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Longest PW, Kleinstreuer C. Computational models for simulating multicomponent aerosol evaporation in the upper respiratory airways. Aerosol Sci Technol. 2005;39:124–38.

    Google Scholar 

  55. Ordoubadi M, Gregson FK, Melhem O, Barona D, Miles RE, D’Sa D, et al. Multi-solvent microdroplet evaporation: modeling and measurement of spray-drying kinetics with inhalable pharmaceutics. Pharm Res. 2019;36:100.

    PubMed  Google Scholar 

  56. Fuchs NA, Sutugin AG. Highly dispersed aerosols. Ann Arbor: Ann Arbor Science Publ; 1970.

    Google Scholar 

  57. Clift R, Grace JR, Weber ME. Bubbles, drops, and particles. New York: Academic Press; 1978.

    Google Scholar 

  58. Leong K. Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations. J Aerosol Sci. 1987;18:511–24.

    CAS  Google Scholar 

  59. Lee SH, Heng D, Ng WK, Chan H-K, Tan RB. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm. 2011;403:192–200.

    CAS  PubMed  Google Scholar 

  60. Li L, Leung SSY, Gengenbach T, Yu J, Gao GF, Tang P, et al. Investigation of L-leucine in reducing the moisture-induced deterioration of spray-dried salbutamol sulfate power for inhalation. Int J Pharm. 2017;530:30–9.

    CAS  PubMed  Google Scholar 

  61. Belotti S, Rossi A, Colombo P, Bettini R, Rekkas D, Politis S, et al. Spray-dried amikacin sulphate powder for inhalation in cystic fibrosis patients: the role of ethanol in particle formation. Eur J Pharm Biopharm. 2015;93:165–72.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longest, P.W., Farkas, D., Hassan, A. et al. Computational Fluid Dynamics (CFD) Simulations of Spray Drying: Linking Drying Parameters with Experimental Aerosolization Performance. Pharm Res 37, 101 (2020). https://doi.org/10.1007/s11095-020-02806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-02806-y

Key Words

Navigation