Skip to main content

Advertisement

Log in

Why Wait? The Case for Treating Tuberculosis with Inhaled Drugs

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The discovery of drugs to treat tuberculosis (TB) was a major medical milestone in the twentieth century. However, from the outset, drug resistance was observed. Currently, of the 10 million people that exhibit TB symptoms each year, 450,000 have multidrug or extensively drug resistant (MDR or XDR) TB. While greater understanding of the host and pathogen (Mycobacterium tuberculosis, Mtb) coupled with scientific ingenuity will lead to new drugs and vaccines, in the meantime 4000 people die daily from TB. Thus, efforts to improve existing TB drugs should also be prioritized. Improved efficacy and decreased dose and associated toxicity of existing drugs would translate to greater compliance, life expectancy and quality of life of Mtb infected individuals. One potential strategy to improve existing drugs is to deliver them by inhalation as aerosols to the lung, the primary site of Mtb infection. Inhaled drugs are used for other pulmonary diseases, but they have yet to be utilized for TB. Inhaled therapies for TB represent an untapped opportunity that the pharmaceutical, clinical and regulatory communities should consider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COPD:

Chronic Obstructive Pulmonary Disease

DPI:

Dry powder inhalers

NTM:

Non-tuberculous mycobacteria

MDR:

Multidrug drug resistant

POA:

Pyrazinoic acid

PAEs:

Pyrazinoic acid esters

PDP:

Pyrazinoic acid/ester dry powder

XDR:

Extensively drug resistant

References

  1. WHO. Global tuberculosis report 2018. World Health Organization. Available from: https://www.who.int/tb/publications/global_report/en/.

  2. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E, Theron G, van Helden P, Niemann S, Merker M, Dowdy D, Van Rie A, Siu GK, Pasipanodya JG, Rodrigues C, Clark TG, Sirgel FA, Esmail A, Lin HH, Atre SR, Schaaf HS, Chang KC, Lange C, Nahid P, Udwadia ZF, Horsburgh CR, Jr., Churchyard GJ, Menzies D, Hesseling AC, Nuermberger E, McIlleron H, Fennelly KP, Goemaere E, Jaramillo E, Low M, Jara CM, Padayatchi N, Warren RM. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017.

  3. Dheda K, Gumbo T, Maartens G, Dooley KE, Murray M, Furin J, et al. Lancet respiratory medicine drug-resistant tuberculosis commission g. the lancet respiratory medicine commission: 2019 update: epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant and incurable tuberculosis. Lancet Respir Med. 2019;7(9):820–6.

    CAS  PubMed  Google Scholar 

  4. De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv Pharmacol. 2013;67:317–58.

    PubMed  Google Scholar 

  5. Hickey AJ, Montgomery AB. Aerosolized pentamidine for treatment and prophylaxis of Pneumocystis carinii pneumonia with acquired immunodeficiency syndrome. In: Hickey AJ, editor. Pharmaceutical inhalation aerosol technology: Marcel Dekker; 2004; 459–488.

  6. D'Ambrosio L, Centis R, Tiberi S, Tadolini M, Dalcolmo M, Rendon A, et al. Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: a systematic review. J Thorac Dis. 2017;9(7):2093–101.

    PubMed  PubMed Central  Google Scholar 

  7. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol. 2009;5(7):e1000423.

    PubMed  PubMed Central  Google Scholar 

  8. Mori G, Orena BS, Franch C, Mitchenall LA, Godbol AA, Rodrigues L, et al. The EU approved antimalarial Pyronaridine shows Antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis. 2018;112:98–109.

    CAS  PubMed  Google Scholar 

  9. Mikusova K, Ekins S. Learning from the past for TB drug discovery in the future. Drug Discov Today. 2017;22:534–45.

    PubMed  Google Scholar 

  10. NIAID. NIAID Startegic plan for tuberculosis research Available from: https://www.niaid.nih.gov/sites/default/files/TBStrategicPlan2018.pdf.

  11. Miller JB, Abramson HA, Ratner B. Aerosol streptomycin treatment of advanced pulmonary tuberculosis in children. Am J Diseases Children. 1950;80(2):207–37.

    CAS  Google Scholar 

  12. Giovagnoli S, Schoubben A, Ricci M. The long and winding road to inhaled TB therapy: not only the bug's fault. Drug Dev Ind Pharm. 2017;43(3):347–63.

    CAS  PubMed  Google Scholar 

  13. Smaldone GC. Repurposing of gamma interferon via inhalation delivery. Adv Drug Deliv Rev 2018.

  14. Newman SP. Delivering drugs to the lungs: the history of repurposing in the treatment of respiratory diseases. Adv Drug Deliv Rev 2018.

  15. Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol. 2014;12:159–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Boisson M, Jacobs M, Gregoire N, Gobin P, Marchand S, Couet W, et al. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob Agents Chemother. 2014;58(12):7331–9.

    PubMed  PubMed Central  Google Scholar 

  17. Strydom N, Gupta SV, Fox WS, Via LE, Bang H, Lee M, et al. Tuberculosis drugs' distribution and emergence of resistance in patient's lung lesions: a mechanistic model and tool for regimen and dose optimization. PLoS Med. 2019;16(4):e1002773.

    PubMed  PubMed Central  Google Scholar 

  18. Dheda K, Lenders L, Magombedze G, Srivastava S, Raj P, Arning E, et al. Drug-penetration gradients associated with acquired drug resistance in patients with tuberculosis. Am J Respir Crit Care Med. 2018;198(9):1208–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hickey AJ. Introduction: A guide to treatment and prevention of tuberculosis based on principles of dosage form design and drug delivery. In: Hickey AJ, Misra A, Fourie PB, editors. Drug delivery systems for tuberculosis prevention and treatment. New York: John Wiley and Sons; 2016. p. 1–10.

    Google Scholar 

  20. Hickey AJ, Durham PG, Dharmadhikari A, Nardell EA. Inhaled drug treatment for tuberculosis: past progress and future prospects. J Control Release : Off J Control Release Soc. 2016;240:127–34.

    CAS  Google Scholar 

  21. Reuter A, Tisile P, von Delft D, Cox H, Cox V, Ditiu L, et al. The devil we know: is the use of injectable agents for the treatment of MDR-TB justified? Int J Tuberc Lung Dis. 2017;21(11):1114–26.

    CAS  PubMed  Google Scholar 

  22. Geller DE, Weers J, Heuerding S. Development of an inhaled dry-powder formulation of tobramycin using PulmoSphere technology. J Aerosol Med Pulm Drug Deliv. 2011;24(4):175–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Littlewood KJ, Higashi K, Jansen JP, Capkun-Niggli G, Balp MM, Doering G, et al. Angyalosi G. a network meta-analysis of the efficacy of inhaled antibiotics for chronic pseudomonas infections in cystic fibrosis. J Cystic Fibrosis : Off J Eur Cystic Fibrosis Soc. 2012;11(5):419–26.

    CAS  Google Scholar 

  24. GINA. Global Initiative for Asthma Main Report; 2019. Available from: https://ginasthma.org/wp-content/uploads/2019/06/GINA-2019-main-report-June-2019-wms.pdf.

  25. GOLD. Global Initiative for Chronic Obstructive Lung Disease; 2019. Available from: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf.

  26. Westerman EM, de Boer AH, Le Brun PP, Touw DJ, Frijlink HW, Heijerman HG. Dry powder inhalation of colistin sulphomethate in healthy volunteers: a pilot study. Int J Pharm. 2007;335(1–2):41–5.

    CAS  PubMed  Google Scholar 

  27. Westerman EM, De Boer AH, Le Brun PP, Touw DJ, Roldaan AC, Frijlink HW, et al. Dry powder inhalation of colistin in cystic fibrosis patients: a single dose pilot study. J Cystic Fibrosis : Off J Eur Cystic Fibrosis Soc. 2007;6(4):284–92.

    CAS  Google Scholar 

  28. Akkerman OW, Grasmeijer F, de Lange WCM, Kerstjens HAM, de Vries G, Bolhuis MS, Alffenaar JW, Frijlink HW, Smith G, Gajraj R, de Zwaan R, Hagedoorn P, Dedicoat M, van Soolingen D, van der Werf TS. Cross border, highly individualised treatment of a patient with challenging extensively drug-resistant tuberculosis. Eur Respir J. 2018;51(3).

    PubMed  Google Scholar 

  29. Gonzalez-Juarrero M, Woolhiser LK, Brooks E, DeGroote MA, Lenaerts AJ. Mouse model for efficacy testing of antituberculosis agents via intrapulmonary delivery. Antimicrob Agents Chemother. 2012;56(7):3957–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Garcia-Contreras L, Fiegel J, Telko MJ, Elbert K, Hawi A, Thomas M, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a Guinea pig model. Antimicrob Agents Chemother. 2007;51(8):2830–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E, et al. Single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(6):2613–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Olivier KN, Griffith DE, Eagle G, McGinnis JP 2nd, Micioni L, Liu K, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017;195(6):814–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis KK, Kao PN, Jacobs SS, Ruoss SJ. Aerosolized amikacin for treatment of pulmonary Mycobacterium avium infections: an observational case series. BMC Pulm Med. 2007;7:2.

    PubMed  PubMed Central  Google Scholar 

  34. Safdar A. Aerosolized amikacin in patients with difficult-to-treat pulmonary nontuberculous mycobacteriosis. Eur J Clin Microbiol Infect Dis. 2012;31(8):1883–7.

    CAS  PubMed  Google Scholar 

  35. Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis. 2017;17(1):558.

    PubMed  PubMed Central  Google Scholar 

  36. Parola P, Brouqui P. Clinical and microbiological efficacy of adjunctive salvage therapy with inhaled aminoglycosides in a patient with refractory cavitary pulmonary tuberculosis. Clin Infect Dis. 2001;33(8):1439.

    CAS  PubMed  Google Scholar 

  37. Sacks LV, Pendle S, Orlovic D, Andre M, Popara M, Moore G, et al. Adjunctive salvage therapy with inhaled aminoglycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin Infect Dis. 2001;32(1):44–9.

    CAS  PubMed  Google Scholar 

  38. Rikimaru T, Koga T, Sueyasu Y, Ide S, Kinosita M, Sugihara E, et al. Treatment of ulcerative endobronchial tuberculosis and bronchial stenosis with aerosolized streptomycin and steroids. Int J Tuberc Lung Dis. 2001;5(8):769–74.

    CAS  PubMed  Google Scholar 

  39. Young EF, Perkowski E, Malik S, Hayden JD, Durham PG, Zhong L, et al. Inhaled Pyrazinoic acid esters for the treatment of tuberculosis. Pharm Res. 2016;33(10):2495–505.

    CAS  PubMed  Google Scholar 

  40. Montgomery SA, Young EF, Durham PG, Zulauf KE, Rank L, Miller BK, et al. Efficacy of pyrazinoic acid dry powder aerosols in resolving necrotic and non-necrotic granulomas in a Guinea pig model of tuberculosis. PLoS One. 2018;13(9):e0204495.

    PubMed  PubMed Central  Google Scholar 

  41. Lee RE, Hurdle JG, Liu J, Bruhn DF, Matt T, Scherman MS, Vaddady PK, Zheng Z, Qi J, Akbergenov R, Das S, Madhura DB, Rathi C, Trivedi A, Villellas C, Lee RB, Rakesh, Waidyarachchi SL, sun D, McNeil MR, Ainsa JA, Boshoff HI, Gonzalez-Juarrero M, Meibohm B, Bottger EC, Lenaerts AJ. Spectinamides: a new class of semisynthetic antituberculosis agents that overcome native drug efflux. Nat Med 2014;20(2):152–158.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 2000;17(8):955–61.

    CAS  PubMed  Google Scholar 

  43. Suarez S, O'Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res. 2001;18(9):1315–9.

    CAS  PubMed  Google Scholar 

  44. Suarez S, O'Hara P, Kazantseva M, Newcomer CE, Hopfer R, McMurray DN, et al. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J Antimicrob Chemother. 2001;48(3):431–4.

    CAS  PubMed  Google Scholar 

  45. Verma RK, Germishuizen WA, Motheo MP, Agrawal AK, Singh AK, Mohan M, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother. 2013;57(2):1050–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yokota S, Miki K. Effects of INH (isoniazid) inhalation in patients with endobronchial tuberculosis (EBTB). Kekkaku. 1999;74(12):873–7.

    CAS  PubMed  Google Scholar 

  47. Garcia-Contreras L, Sung JC, Muttil P, Padilla D, Telko M, Verberkmoes JL, et al. Dry powder PA-824 aerosols for treatment of tuberculosis in Guinea pigs. Antimicrob Agents Chemother. 2010;54(4):1436–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Young EF, Hickey AJ, Braunstein M. Testing inhaled drug therapies for treating tuberculosis. In: Hickey AJ, editor. Delivery systems for tuberculosis prevention and treatment (advances in pharmaceutical technology): John Wiley and Sons, ltd. ; 2016. p. 113–130.

  49. Muttil P, Wang C, Hickey AJ. Inhaled drug delivery for tuberculosis therapy. Pharm Res. 2009;26(11):2401–16.

    CAS  PubMed  Google Scholar 

  50. Orme IM, Basaraba RJ. The formation of the granuloma in tuberculosis infection. Semin Immunol. 2014;26(6):601–9.

    PubMed  Google Scholar 

  51. Padilla-Carlin DJ, Mcmurray DN, Hickey A. The Guinea pig as a model of infectious diseases. Comparative Med. 2008;58:324–40.

    CAS  Google Scholar 

  52. Canning BJ. Modeling asthma and COPD in animals: a pointless exercise? Curr Opin Pharmacol. 2003;3(3):244–50.

    CAS  PubMed  Google Scholar 

  53. Canning BJ, Chou Y. Using Guinea pigs in studies relevant to asthma and COPD. Pulm Pharmacol Ther. 2008;21(5):702–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia-Contreras L, Fiegel J, Telko MJ, Elbert K, Hawi A, Thomas M, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a Guinea pig model. Antimicrob Agents Chemother. 2007;51(8):2830–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Contreras L, Sethuraman V, Kazantseva M, Godfrey V, Hickey AJ. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the Guinea pig. J Antimicrob Chemother. 2006;58(5):980–6.

    CAS  PubMed  Google Scholar 

  56. Durham PG, Young EF, Braunstein MS, Welch JT. Hickey AJ. A dry powder combination of pyrazinoic acid and its n-propyl ester for aerosol administration to animals. Int J Pharm. 2016;514(2):384–91.

    CAS  PubMed  Google Scholar 

  57. Cynamon MH, Klemens SP, Chou TS, Gimi RH, Welch JT. Antimycobacterial activity of a series of pyrazinoic acid esters. J Med Chem. 1992;35(7):1212–5.

    CAS  PubMed  Google Scholar 

  58. Pires D, Valente E, Simoes MF, Carmo N, Testa B, Constantino L, et al. Esters of Pyrazinoic acid are active against pyrazinamide-resistant strains of mycobacterium tuberculosis and other naturally resistant mycobacteria in vitro and ex vivo within macrophages. Antimicrob Agents Chemother. 2015;59(12):7693–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Via LE, Savic R, Weiner DM, Zimmerman MD, Prideaux B, Irwin SM, et al. Host-mediated bioactivation of pyrazinamide: implications for efficacy, resistance, and Therapeutic Alternatives. ACS Infect Dis. 2015;1(5):203–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lanoix JP, Tasneen R, O'Brien P, Sarathy J, Safi H, Pinn M, et al. High systemic exposure of Pyrazinoic acid has limited Antituberculosis activity in murine and rabbit models of tuberculosis. Antimicrob Agents Chemother. 2016;60(7):4197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lenaerts A, Barry CE 3rd, Dartois V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev. 2015;264(1):288–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ordway DJ, Shanley CA, Caraway ML, Orme EA, Bucy DS, Hascall-Dove L, et al. Evaluation of standard chemotherapy in the Guinea pig model of tuberculosis. Antimicrob Agents Chemother. 2010;54(5):1820–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shang S, Shanley CA, Caraway ML, Orme EA, Henao-Tamayo M, Hascall-Dove L, et al. Activities of TMC207, rifampin, and pyrazinamide against mycobacterium tuberculosis infection in Guinea pigs. Antimicrob Agents Chemother. 2011;55(1):124–31.

    CAS  PubMed  Google Scholar 

  64. Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, et al. Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother. 2007;51(9):3338–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, et al. Physical characterization of component particles included in dry powder inhalers. I. Strategy review and static characteristics. J Pharm Sci. 2007;96(5):1282–301.

    CAS  PubMed  Google Scholar 

  66. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HD, Mulder T, et al. Physical characterization of component particles included in dry powder inhalers. II Dynamic characteristics. J Pharm Sci. 2007;96(5):1302–19.

    CAS  PubMed  Google Scholar 

  67. Das SC, Stewart PJ. Understanding the respiratory delivery of high dose anti-tubercular drugs. In: Hickey AJ, Misra A, Fourie PB, editors. Drug delivery systems for tuberculosis prevention and treatment. New York: John Wiley and Sons; 2016. p. 258–74.

    Google Scholar 

  68. de Boer AH, Hagedoorn P, Westerman EM, Le Brun PP, Heijerman HG, Frijlink HW. Design and in vitro performance testing of multiple air classifier technology in a new disposable inhaler concept (Twincer) for high powder doses. Eur J Pharmaceut Sci : Off J Eur Fed Pharmaceut Sci. 2006;28(3):171–8.

    Google Scholar 

  69. Sibum I, Hagedoorn P, de Boer AH, Frijlink HW, Grasmeijer F. Challenges for pulmonary delivery of high powder doses. Int J Pharm. 2018;548(1):325–36.

    CAS  PubMed  Google Scholar 

  70. Sibum I, Hagedoorn P, Frijlink HW, Grasmeijer F. Characterization and Formulation of Isoniazid for High-Dose Dry Powder Inhalation. Pharmaceutics. 2019;11(5).

    PubMed Central  Google Scholar 

  71. Hickey AJ, Misra A, Fourie PB. Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis. J Pharm Sci. 2013;102(11):3900–7.

    CAS  PubMed  Google Scholar 

  72. Pooran A, Pieterson E, Davids M, Theron G, Dheda K. What is the cost of diagnosis and management of drug resistant tuberculosis in South Africa? PLoS One. 2013;8(1):e54587.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Banaschewski B, Verma D, Pennings LJ, Zimmerman M, Ye Q, Gadawa J, Dartois V, Ordway D, van Ingen J, Ufer S, Stapleton K, Hofmann T. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J Cystic Fibrosis : Off J Eur Cystic Fibrosis Soc 2019;18(5):714–720.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We acknowledge extensive discussions with Mr. Howard Keith Miller and thank Dr. Barry R. Bloom for feedback on the manuscript. SE is CEO and owner of Collaborations Pharmaceuticals, Inc., and has filed a provisional patent “Treatment for Tuberculosis”. AJH has filed a provisional patent “Dry powder formulations of antituberculosis drug methods of treatment and using the same” and PCT/US2018/36351 “CPZEN compositions and uses”.

Funding

SE, MB and AJH gratefully acknowledge funding from the Department of Defense grant # W81XWH1810802. MB and AJH acknowledge funding from NIAID R21AI131241, the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Award 1UL1TR001111, NC TraCS 4DR31502 and the AIDS Clinical Trials Group (ACTG) UM1 through Grant Award AI068636 award.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript and reviewed the final version.

Corresponding author

Correspondence to Sean Ekins.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braunstein, M., Hickey, A.J. & Ekins, S. Why Wait? The Case for Treating Tuberculosis with Inhaled Drugs. Pharm Res 36, 166 (2019). https://doi.org/10.1007/s11095-019-2704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2704-6

KEY WORDS

Navigation