Skip to main content
Log in

Surface Enrichment and Depletion of the Active Ingredient in Spray Dried Amorphous Solid Dispersions

  • Research Paper
  • Theme: Formulation and Manufacturing of Solid Dosage Forms
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To study the effects of physicochemical properties of drug and polymer, as well as the drug-polymer interactions, on the surface composition of SDDs.

Methods

Ethanol solutions containing a model drug (IMC, NMP or FCZ) and a model polymer (PVPK12, PVPK30 or PVP-VA) were spray dried, and the surface composition of SDDs was analyzed by XPS. The surface tensions of pure components and their solutions were measured using Wilhelmy plate and/or calculated using ACD/Labs. NMR and DLS were used to obtain the diffusion coefficients of IMC, NMP, PVPK12 and PVPK30 in solvents. Flory-Huggins interaction parameters for selected drug-polymer pairs were obtained using a melting point depression method.

Results

Significant surface enrichment or depletion of the drug was observed in SDDs depending on the particular drug-polymer combination. With PVP as the dispersion polymer, IMC and NMP were surface enriched; whereas FCZ, a hydrophilic drug, was surface depleted. With increasing PVP molecular weight, the surface drug concentration increased, and the effect was greater in the NMP/PVP and FCZ/PVP systems than in the IMC/PVP system where strong drug-polymer interaction existed. Changing the polymer from PVP to PVP-VA reduced the surface concentration of the drug.

Conclusions

The surface concentration of a SDD can be significantly different from the bulk concentration. The main results of this work are consistent with the notion that the relative surface tensions control surface enrichment or depletion. Besides, the relative diffusion rates of the components and the strength of their interactions may also affect the surface composition of the SDDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

DOSY:

Diffusion-ordered spectroscopy

DSC:

Differential scanning calorimetry

FCZ:

Fluconazole

HPLC:

High performance liquid chromatography

IMC:

Indomethacin

NMP:

Nimodipine

NMR:

Nuclear magnetic resonance

PVP:

Poly(vinyl pyrrolidone)

PVP-VA:

Poly(vinyl pyrrolidone − vinyl acetate) copolymer

SDD:

Spray dried dispersion

SEM:

Scanning electron microscopy

VP dimer:

Dimer of vinyl pyrrolidone

XPS:

X-ray photoelectron spectroscopy

References

  1. Ré M-I. Formulating drug delivery systems by spray drying. Dry Technol. 2006;24(4):433–46.

    Article  Google Scholar 

  2. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  PubMed  Google Scholar 

  3. Sollohub K, Cal K. Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci. 2010;99(2):587–97.

    Article  CAS  PubMed  Google Scholar 

  4. Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J. Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Del. 2010;7(6):705–19.

    Article  CAS  Google Scholar 

  5. Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur J Pharm Sci. 2005;26(2):219–30.

    Article  CAS  PubMed  Google Scholar 

  6. Willart JF, Descamps M. Solid state amorphization of pharmaceuticals. Mol Pharm. 2008;5(6):905–20.

    Article  CAS  PubMed  Google Scholar 

  7. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo W, Nightingale J. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  8. Charlesworth DH, Marshall WR. Evaporation from drops containing dissolved solids. AICHE J. 1960;6(1):9–23.

    Article  CAS  Google Scholar 

  9. Dlouhy J, Gauvin WH. Evaporation rates in spray drying. Can J Chem Eng. 1960;38(4):113–20.

    Article  CAS  Google Scholar 

  10. Birchal VS, Huang L, Mujumdar AS, Passos ML. Spray dryers: modeling and simulation. Dry Technol. 2006;24(3):359–71.

    Article  Google Scholar 

  11. Martens R, Naudts M. Influence of process variables on some whole milk powder characteristics. Milchwissenschaft. 1976;31:396–401.

    Google Scholar 

  12. Alexander K, Judson King C. Factors governing surface morphology of spray-dried amorphous substances. Dry Technol. 1985;3(3):321–48.

    Article  Google Scholar 

  13. Wallack DA, El-Sayed TM, King CJ. Changes in particle morphology during drying of drops of carbohydrate solutions and food liquids. 2. Effects on drying rate. Ind Eng Chem Res. 1990;29(12):2354–7.

    Article  CAS  Google Scholar 

  14. Kelly J, Kelly PM, Harrington D. Influence of processing variables on the physicochemical properties of spray dried fat-based milk powders. Lait. 2002;82(4):401–12.

    Article  Google Scholar 

  15. Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253–84.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16(11):1722–8.

    Article  CAS  PubMed  Google Scholar 

  17. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliver Rev. 2001;48(1):27–42.

    Article  CAS  Google Scholar 

  18. Saad M, Gaiani C, Mullet M, Scher J, Cuq B. X-Ray photoelectron spectroscopy for wheat powders: measurement of surface chemical composition. J Agr Food Chem. 2011;59(5):1527–40.

    Article  CAS  Google Scholar 

  19. Guascito MR, Cesari D, Chirizzi D, Genga A, Contini D. XPS surface chemical characterization of atmospheric particles of different sizes. Atmos Environ. 2015;116:146–54.

    Article  CAS  Google Scholar 

  20. Kim EHJ, Chen XD, Pearce D. Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture. J Food Eng. 2009;94(2):163–8.

    Article  CAS  Google Scholar 

  21. Kim EHJ, Chen XD, Pearce D. Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J Food Eng. 2009;94(2):169–81.

    Article  CAS  Google Scholar 

  22. Gaiani C, Ehrhardt J, Scher J, Hardy J, Desobry S, Banon S. Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties. Colloids Surf B: Biointerfaces. 2006;49(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kim EHJ, Xiao DC, Pearce D. Effect of surface composition on the flowability of industrial spray-dried dairy powders. Colloids Surf B: Biointerfaces. 2005;46(3):182–7.

    Article  CAS  PubMed  Google Scholar 

  24. Chen XD, Sidhu H, Nelson M. Theoretical probing of the phenomenon of the formation of the outermost surface layer of a multi-component particle, and the surface chemical composition after the rapid removal of water in spray drying. Chem Eng Sci. 2011;66(24):6375–84.

    Article  CAS  Google Scholar 

  25. Williams DR. Particle engineering in pharmaceutical solids processing: surface energy considerations. Curr Pharm Design. 2015;21(19):2677–94.

    Article  CAS  Google Scholar 

  26. Wan F, Bohr A, Maltesen MJ, Bjerregaard S, Foged C, Rantanen J, et al. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying. Pharm Res. 2013;30(4):1065–76.

    Article  CAS  PubMed  Google Scholar 

  27. Kim EHJ, Chen XD, Pearce D. On the mechanisms of surface formation and the surface compositions of industrial milk powders. Dry Technol. 2003;21(2):265–78.

    Article  CAS  Google Scholar 

  28. Nikolova Y, Petit J, Gianfrancesco A, Sanders CFW, Scher J, Gaiani C. Impact of spray-drying process parameters on dairy powder surface composition and properties. Dry Technol. 2015;33(13):1654–61.

    Article  Google Scholar 

  29. Wang S, Langrish TAG. A distributed parameter model for particles in the spray drying process. Adv Powder Technol. 2009;20(3):220–6.

    Article  CAS  Google Scholar 

  30. Porowska A, Dosta M, Heinrich S, Fries L, Gianfrancesco A, Palzer S. Influence of feed composition and drying parameters on the surface composition of a spray-dried multicomponent particle. Dry Technol. 2015;33(15–16):1911–9.

    Article  Google Scholar 

  31. Foerster M, Gengenbach T, Woo MW, Selomulya C. The impact of atomization on the surface composition of spray-dried milk droplets. Colloids Surf B: Biointerfaces. 2016;140:460–71.

    Article  CAS  PubMed  Google Scholar 

  32. Foerster M, Gengenbach T, Woo MW, Selomulya C. The influence of the chemical surface composition on the drying process of milk droplets. Adv Powder Technol. 2016;27(6):2324–34.

    Article  CAS  Google Scholar 

  33. Porowska A, Dosta M, Fries L, Gianfrancesco A, Heinrich S, Palzer S. Predicting the surface composition of a spray-dried particle by modelling component reorganization in a drying droplet. Chem Eng Res Des. 2016;110:131–40.

    Article  CAS  Google Scholar 

  34. Vehring R, Foss WR, Lechuga-Ballesteros D. Particle formation in spray drying. J Aerosol Sci. 2007;38(7):728–46.

    Article  CAS  Google Scholar 

  35. Tao J, Sun Y, Zhang GGZ, Yu L. Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res. 2009;26(4):855–64.

    Article  CAS  PubMed  Google Scholar 

  36. Davies MC, Wilding IR, Short RD, Khan MA, Watts JF, Melia CD. An analysis of the surface chemical structure of polymethacrylate (Eudragit) film coating polymers by XPS. Int J Pharm. 1989;57(3):183–7.

    Article  CAS  Google Scholar 

  37. de Gennes PG. Polymer solutions near an interface. 1. Adsorption and depletion layers. Macromolecules. 1981;14(6):1637–44.

    Article  Google Scholar 

  38. Ober R, Paz L, Taupin C, Pincus P, Boileau S. Study of the surface tension of polymer solutions: theory and experiments. 1. Good solvent conditions. Macromolecules. 1983;16(1):50–5.

    Article  CAS  Google Scholar 

  39. Legrand DG, Gaines GL. The molecular weight dependence of polymer surface tension. J Colloid Interface Sci. 1969;31(2):162–7.

    Article  CAS  Google Scholar 

  40. Jalbert C, Koberstein JT, Yilgor I, Gallagher P, Krukonis V. Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane). Macromolecules. 1993;26(12):3069–74.

    Article  CAS  Google Scholar 

  41. Sun YE, Tao J, Zhang GGZ, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99(9):4023–31.

    Article  CAS  PubMed  Google Scholar 

  42. Adler M, Unger M, Lee G. Surface composition of spray-dried particles of bovine serum albumin/trehalose/surfactant. Pharm Res. 2000;17(7):863–70.

    Article  CAS  PubMed  Google Scholar 

  43. Nuzzo M, Millqvist-Fureby A, Sloth J, Bergenstahl B. Surface composition and morphology of particles dried individually and by spray drying. Dry Technol. 2015;33(6):757–67.

    Article  CAS  Google Scholar 

  44. Ausserre D, Hervet H, Rondelez F. Concentration dependence of the interfacial depletion layer thickness for polymer solutions in contact with nonadsorbing walls. Macromolecules. 1986;19(1):85–8.

    Article  CAS  Google Scholar 

  45. Lee LT, Guiselin O, Lapp A, Farnoux B, Penfold J. Direct measurements of polymer depletion layers by neutron reflectivity. Phys Rev Lett. 1991;67(20):2838–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This research is supported by China National Nature Science Foundation (Project Number 81573355), and Janssen Pharmaceuticals, Inc., a pharmaceutical company of Johnson & Johnson. FQ also acknowledges the funds provided by the Center for Life Sciences at Tsinghua and Peking Universities (Beijing, China) and by the China Recruitment Program of Global Experts. LY acknowledges partial support by the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian Yu or Feng Qian.

Additional information

Guest Editors: Tony Zhou and Tonglei Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Yang, K., Huang, C. et al. Surface Enrichment and Depletion of the Active Ingredient in Spray Dried Amorphous Solid Dispersions. Pharm Res 35, 38 (2018). https://doi.org/10.1007/s11095-018-2345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2345-1

Key words

Navigation