Skip to main content

Advertisement

Log in

Mixed pH-Sensitive Polymeric Micelles for Combination Drug Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To prepare mixed polymeric micelles that can carry two different drugs, doxorubicin (DOX) and 17-hydroxyethylamino-17-demethoxygeldanamycin (GDM-OH), for combination cancer chemotherapy.

Methods

The pH-sensitive micelles were prepared from poly(ethylene glycol)-poly(aspartate hydrazide) block copolymers to which either DOX or GDM-OH is conjugated through acid-labile hydrazone bond (individual micelles). Mixed micelles were formed not only by simply mixing two different individual micelles in aqueous solutions (aqueous mixed micelles) but also by evaporating organic solvents from the organic/aqueous mixed solvents in which two block copolymers possessing different drugs were dissolved homogeneously (organic mixed micelles). Particle size measurements, pH-dependent drug release tests, cytotoxicity assays and western blot analysis were subsequently conducted.

Results

Individual and aqueous/organic mixed micelles showed clinically relevant particle size (<100 nm) and pH-dependent drug release patterns. Mixed polymer micelles suppress cancer cell growth effectively in a drug concentration, mixing method and schedule-dependent way.

Conclusion

Combination chemotherapy using polymeric micelles seems to minimize a schedule-dependent change in combination drug efficacy in comparison to drug combination using DMSO formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Smalley KSM, Haass NK, Brafford PA, Lioni M, Flaherty KT, Herlyn M. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 2006;5:1136–44.

    Article  CAS  PubMed  Google Scholar 

  3. Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6:546–58.

    Article  CAS  PubMed  Google Scholar 

  4. Xu W, Neckers L. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res. 2007;13:1625–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yao Q, Weigel B, Kersey J. Synergism between etoposide and 17-AAG in leukemia cells: critical roles for hsp90, FLT3, topoisomerase II, Chk1, and Rad51. Clin Cancer Res. 2007;13:1591–600.

    Article  CAS  PubMed  Google Scholar 

  6. Beliakoff J, Whitesell L. Hsp90: an emerging target for breast cancer therapy. Anticancer drugs. 2004;15:651–62.

    Article  CAS  PubMed  Google Scholar 

  7. Goetz MP, Toft DO, Ames MM, Erlichman C. The hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol. 2003;14:1169–76.

    Article  CAS  PubMed  Google Scholar 

  8. Atkins JH, Gershell LJ. Selective anticancer drugs. Nat Rev Cancer. 2002;2:645–6.

    Article  CAS  Google Scholar 

  9. Hande KR. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta. 1998;1400:173–84.

    CAS  PubMed  Google Scholar 

  10. Senter PS, Kopecek J. Drug carriers in medicine and biology. Mol Pharm. 2004;1:395–8.

    Article  CAS  PubMed  Google Scholar 

  11. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.

    Article  CAS  PubMed  Google Scholar 

  12. Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R. Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem Int Ed. 2005;44:4061–6.

    Article  CAS  Google Scholar 

  13. Kopecek J, Kopeckova P, Minko T, Lu ZR. HPMA copolymer–anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50:61–81.

    Article  CAS  PubMed  Google Scholar 

  14. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliver Rev. 2009;61:768–84.

    Article  CAS  Google Scholar 

  15. Nishiyama N, Bae Y, Miyata K, Fukushima S, Kataoka K. Smart polymeric micelles for gene and drug delivery. Drug Discov Today: Technologies. 2005;2:21–6.

    Article  CAS  Google Scholar 

  16. Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24:119–32.

    Article  CAS  Google Scholar 

  17. Bae Y, Diezi TA, Zhao A, Kwon GS. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release. 2007;122:324–30.

    Article  CAS  PubMed  Google Scholar 

  18. Forrest ML, Zhao A, Won CY, Malick AW, Kwon GS. Lipophilic prodrugs of hsp90 inhibitor geldanamycin for nanoencapsulation in poly(ethylene glycol)-b- poly(caprolactone) micelles. J Control Release. 2006;116:139–49.

    Article  CAS  PubMed  Google Scholar 

  19. Bae Y, Buresh RA, Williamson TP, Chen THH, Furgeson DY. Intelligent biosynthetic nanobiomaterials for hyperthermic combination chemotherapy and thermal drug targeting of HSP90 inhibitor geldanamycin. J Control Release. 2007;122:16–23.

    Article  CAS  PubMed  Google Scholar 

  20. Workman P, Powers MV. Chaperoning cell death: a critical dual role for hsp90 in small-cell lung cancer. Nat Chem Biol. 2007;3:455–7.

    Article  CAS  PubMed  Google Scholar 

  21. Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, et al. High hsp90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007;67:2932–7.

    Article  CAS  PubMed  Google Scholar 

  22. Young JC, Moarefi I, Hartl FU. Hsp90: a specialized but essential protein-folding tool. J Cell Biol. 2001;154:267–73.

    Article  CAS  PubMed  Google Scholar 

  23. Barker CR, McNamara AV, Rackstraw SA, Nelson DE, White MR, Watson AJM, et al. Inhibition of hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage. Nucleic Acids Res. 2006;34:1148–57.

    Article  CAS  PubMed  Google Scholar 

  24. Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst. 2005;1:242–50.

    Article  CAS  PubMed  Google Scholar 

  25. Kasuya Y, Lu ZR, Kopeckova P, Minko T, Tabibi SE, Kopecek J. Synthesis and characterization of HPMA copolymer-aminopropylgeldanamycin conjugates. J Control Release. 2001;74:203–11.

    Article  CAS  PubMed  Google Scholar 

  26. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic. J Antibiot. 1970;23:442–7.

    CAS  PubMed  Google Scholar 

  27. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;42:4640–3.

    Article  CAS  Google Scholar 

  28. Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–30.

    Article  CAS  Google Scholar 

  29. Xiao L, Rasouli P, Ruden DM. Possible effects of early treatments of hsp90 inhibitors on preventing the evolution of drug resistance to other anti-cancer drugs. Curr Med Chem. 2007;14:223–32.

    Article  CAS  PubMed  Google Scholar 

  30. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, et al. A high affinity conformation of hsp90 confers tumour selectivity on hsp90 inhibitors. Nature. 2003;425:357–9.

    Article  Google Scholar 

  31. Fortune JM, Osheroff N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol. 2000;64:221–53.

    Article  CAS  PubMed  Google Scholar 

  32. Alani AWG, Bae Y, Rao D, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765–72.

    Article  CAS  PubMed  Google Scholar 

  33. West KR, Otto S. Reversible covalent chemistry in drug delivery. Curr Drug Discov Technol. 2005;2:123–60.

    Article  CAS  PubMed  Google Scholar 

  34. Barker C, Hamlett J, Pennington SR, Burrows F, Lundgren K, Lough R, et al. The topoisomerase II-hsp90 complex: a new chemotherapeutic target. Int J Cancer. 2006;118:2685–93.

    Article  CAS  PubMed  Google Scholar 

  35. Kersting G, Tzvetkov MV, Huse K, Kulle B, Hafner V, Brockmoller J, et al. Topoisomerase II beta expression level correlates with doxorubicin-induced apoptosis in peripheral blood cells. N-S Arch Pharmacol. 2006;374:21–30.

    Article  CAS  Google Scholar 

  36. Martin-Richard M, Munoz M, Albanell J, Colomo L, Bellet M, Rey MJ, et al. Serial topoisomerase II expression in primary breast cancer and response to neoadjuvant anthracycline-based chemotherapy. Oncology. 2004;66:388–94.

    Article  CAS  PubMed  Google Scholar 

  37. Burgess D, Doles J, Zender L, Xue W, Ma B, McCombie W, et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. PNAS. 2008;105:9053–8.

    Article  PubMed  Google Scholar 

  38. Chang JT, Lu Y-C, Chen Y-J, Tseng C-P, Chen Y-L, Fang C-W, et al. hTERT phosphorylation by PKC is essential for telomerase holoprotein integrity and enzyme activity in head neck cancer cells. Brit J Cancer. 2006;94:870–8.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida K, Yamaguchi T, Shinagawa H, Taira N, Nakayama KI, Miki Y. Protein kinase C δ activates topoisomerase IIδ to induce apoptotic cell death in response to DNA damage. Mol Cell Biol. 2006;26:3414–31.

    Article  CAS  PubMed  Google Scholar 

  40. Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett. 2007;581:3758–69.

    Article  CAS  PubMed  Google Scholar 

  41. Biship SC, Burlison JA, Blagg BSJ. Hsp90: a novel target for the disruption of multiple signaling cascades. Curr Cancer Drug Tar. 2007;7:369–88.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was partially supported by National Institutes of Health grant R01 AI-43346-08. Y.B. acknowledges research support provided by the Kentucky Lung Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younsoo Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, Y., Alani, A.W.G., Rockich, N.C. et al. Mixed pH-Sensitive Polymeric Micelles for Combination Drug Delivery. Pharm Res 27, 2421–2432 (2010). https://doi.org/10.1007/s11095-010-0234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0234-3

KEY WORDS

Navigation