Skip to main content
Log in

Influence of Stabilizers on the Physicochemical Characteristics of Inhaled Insulin Powders Produced by Supercritical Antisolvent Process

  • Formulation Design, Engineering and Processing
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To examine the effect of stabilizers on aerosol physicochemical characteristics of inhaled insulin particles produced using a supercritical fluid technology.

Materials and Methods

Insulin with stabilizers such as mannitol and trehalose was micronized by aerosol solvent extraction system (ASES). The supercritically-micronized insulin particles were characterized for size, shape, aerosol behavior, crystallinity and secondary structure.

Results

Experimental results indicated that when insulin was incorporated with the most commonly used stabilizer mannitol (insulin/mannitol: 15/85 wt.%, designated IM), the particles formed were irregular and needle-shaped and had a tendency to agglomerate. With the incorporation of a second stabilizer trehalose (insulin/mannitol/trehalose: 15/70/15 wt.%, designated IMT), the particles were relatively uniform, more spherical, less cohesive, and less agglomerated in an air flow, when compared to IM particles. The mass median aerodynamic diameter of the IMT particles was 2.32 μm which is suitable for use in inhalation therapy. In vitro deposition test using micro-orifice uniform deposit impactor showed 69 ± 7 wt.% of the IMT particles was deposited in stage 3, 4, 5 and 6 while 41 ± 15 wt.% of the IM particles was deposited in the same stages. In terms of insulin stability, secondary structures of insulin particles were not adversely affected by the ASES processing studied here.

Conclusions

When properly formulated (as in IMT particles), ASES process can produce particles with appropriate size and size distribution suitable for pulmonary insulin delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. R. Owens, B. Zinman, and G. Bolli. Alternative routes of insulin delivery. Diabet. Med. 20:886–898 (2003). doi:10.1046/j.1464-5491.2003.01076.x.

    Article  PubMed  CAS  Google Scholar 

  2. R. K. Wolff. Safety of inhaled proteins for therapeutic use. J. Aerosol Med. 11:197–219 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. J. Kling. Inhaled insulin’s last gasp? Nat. Biotechnol. 26:479–480 (2008). doi:10.1038/nbt0508-479.

    Article  PubMed  CAS  Google Scholar 

  4. W. T. Cefalu. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care 27:239–246 (2004). doi:10.2337/diacare.27.1.239.

    Article  PubMed  Google Scholar 

  5. J. S. Patton, J. Bukar, and S. Nagarajan. Inhaled insulin. Adv. Drug Deliv. Reiv. 35:235–247 (1999). doi:10.1016/S0169-409X(98)00074-X.

    Article  CAS  Google Scholar 

  6. D. R. Owens. New horizons-alternative routes for insulin therapy. Nature Rev. 1:529–540 (2002).

    Article  CAS  Google Scholar 

  7. R. U. Agu, M. I. Ugwoke, M. Armand, R. Kinget, and N. Verbeke. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2:198–209 (2001). doi:10.1186/rr58.

    Article  PubMed  CAS  Google Scholar 

  8. S. J. Smith and J. A. Bernstein. Therapeutic uses of lung aerosols. In A. J. Hickey (ed.), Inhalation Aerosols: Physical and Biologic Basis for Therapy, Marcel Dekker, New York, 1996, pp. 233–269.

    Google Scholar 

  9. H.-C. Yeh, R. G. Cuddihy, R. F. Phalen, and I-Y. Chang. Comparisons of calculated respiratory tract deposition of particles based on the proposed NCRP model and the new ICRP66 model. Aerosol Sci. Tech. 25:134–140 (1996). doi:10.1080/02786829608965386.

    Article  CAS  Google Scholar 

  10. S. P. Velaga, R. Berger, and J. Carlfors. Supercritical fluids crystallization of budesonide and flunisolide. Pharm. Res. 19:1564–1571 (2002). doi:10.1023/A:1020477204512.

    Article  PubMed  CAS  Google Scholar 

  11. B. Y. Shekunov, J. C. Feeley, A. H. L. Chow, H. H. Y. Tong, and P. York. Aerosolisation behaviour of micronised and supercritically-processed powders. J. Aerosol Sci. 34:553–568 (2003). doi:10.1016/S0021-8502(03)00022-3.

    Article  CAS  Google Scholar 

  12. M. Rehman, B. Y. Shekunov, P. York, D. Lechuga-Ballesteros, D. P. Miller, T. Tan, and P. Colthorpe. Optimisation of powders for pulmonary delivery using supercritical fluid technology. Eur. J. Pharm. Sci. 22:1–17 (2004). doi:10.1016/j.ejps.2004.02.001.

    Article  PubMed  CAS  Google Scholar 

  13. E. Reverchon and A. Spada. Erythromycin micro-particles produced by supercritical fluid atomization. Powder Technol. 141:100–108 (2004). doi:10.1016/j.powtec.2004.02.017.

    Article  CAS  Google Scholar 

  14. H. Steckel, L. Pichert, and B. W. Müller. Influence of process parameters in the ASES process on particle properties of budesonide for pulmonary delivery. Eur. J. Pharmaceut. Biopharmaceut. 57:507–512 (2004). doi:10.1016/j.ejpb.2004.01.002.

    Article  CAS  Google Scholar 

  15. A. J. Hickey and C. A. Dunbar. A new millennium for inhaler technology. Pharm. Technol. 21:116–125 (1997).

    Google Scholar 

  16. X. M. Zeng, G. P. Martin, and C. Marriott. Particulate Interactions in Dry Powder Formulations for Inhalation. Taylor & Francis, London, 2001, pp. 12–26.

    Google Scholar 

  17. B. Subramaniam, R. A. Rajewski, and K. Snavely. Pharmaceutical processing with supercritical carbon dioxide. J. Pharm. Sci. 86:885–890 (1997). doi:10.1021/js9700661.

    Article  PubMed  CAS  Google Scholar 

  18. R. E. Sievers, U. Karst, P. D. Milewski, S. P. Sellers, B. A. Miles, J. D. Schaefer, C. R. Stoldt, and C. Y. Xu. Formation of aqueous small droplet aerosols assisted by supercritical carbon dioxide. Aerosol Sci. Tech. 30:3–15 (1999). doi:10.1080/027868299304840.

    CAS  Google Scholar 

  19. F. Dehghani and N. R. Foster. Dense gas anti-solvent processes for pharmaceutical formulation. Curr. Opin. Solid State Mater. Sci. 7:363–369 (2003). doi:10.1016/j.cossms.2003.11.001.

    Article  CAS  Google Scholar 

  20. A. Shariati and C. J. Peters. Recent developments in particle design using supercritical fluids. Curr. Opin. Solid State Mater. Sci. 7:371–383 (2003). doi:10.1016/j.cossms.2003.12.001.

    Article  CAS  Google Scholar 

  21. S.-A. Cryan. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 7:E20–E41 (2005). doi:10.1208/aapsj070104.

    Article  PubMed  CAS  Google Scholar 

  22. H. Todo, K. Iida, H. Okamoto, and K. Danjo. Improvement of insulin absorption from intratracheally administrated dry powder prepared by supercritical carbon dioxide process. J. Pharm. Sci. 92:2475–2486 (2003). doi:10.1002/jps.10497.

    Article  PubMed  CAS  Google Scholar 

  23. S. W. Stein, B. J. Gabrio, D. Oberreit, P. Hairston, P. B. Myrdal, and T. J. Beck. An evaluation of mass-weighted size distribution measurements with the model 3320 aerodynamic particle sizer. Aerosol Sci. Tech. 36:845–854 (2002). doi:10.1080/02786820290092087.

    Article  CAS  Google Scholar 

  24. W. C. Hinds. Aerosol Technology-properties, Behavior, and Measurement of Airborne Particles. 2nd ed., Wiley, New York, 1999, pp. 42–110.

    Google Scholar 

  25. M. Jackson and H. H. Mantsch. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 30:95–120 (1995). doi:10.3109/10409239509085140.

    Article  PubMed  CAS  Google Scholar 

  26. R. T. Bustami, H.-K. Chan, F. Dehghani, and N. R. Foster. Generation of micro-particles of proteins for aerosol delivery using high pressure modified carbon dioxide. Pharm. Res. 17:1360–1366 (2000). doi:10.1023/A:1007551006782.

    Article  PubMed  CAS  Google Scholar 

  27. N. Elvassore, A. Bertucco, and P. Caliceti. Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J. Pharm. Sci. 90:1628–1636 (2001). doi:10.1002/jps.1113.

    Article  PubMed  CAS  Google Scholar 

  28. W. Snavely, B. Subramaniam, R. Rajewski, and M. R. Defelippis. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent. J. Pharm. Sci. 91:2026–2039 (2002). doi:10.1002/jps.10193.

    Article  PubMed  CAS  Google Scholar 

  29. N. Javanovi, A. Bouchard, G. W. Hofland, G.-J. Witkamp, D. J. A. Crommelin, and W. Jiskoot. Stabilization of proteins in dry powder formulations using supercritical fluid technology. Pharm. Res. 21:1955–1969 (2004). doi:10.1023/B:PHAM.0000048185.09483.e7.

    Article  Google Scholar 

  30. Y. H. Kim and K. S. Shing. Supercritical fluid-micronized ipratropium bromide for pulmonary drug delivery. Powder Technol. 182:25–32 (2008). doi:10.1016/j.powtec.2007.04.009.

    Article  CAS  Google Scholar 

  31. Y. H. Kim, C. Sioutas, P. Fine, and K. S. Shing. Effect of albumin on physical characteristics of drug particles produced by supercritical fluid technology. Powder Technol. 182:354–363 (2008). doi:10.1016/j.powtec.2007.06.008.

    Article  CAS  Google Scholar 

  32. J. Wei, Y.-Z. Lin, J.-M. Zhou, and C.-L. Tsou. FTIR studies of secondary structures of bovine insulin and its derivatives. Biochim. Biophys. Acta. 1080:29–33 (1991).

    PubMed  CAS  Google Scholar 

  33. L. Xie and C.-L. Tsou. Comparison of secondary structures of insulin and proinsulin by FTIR. J. Protein Chem. 12:483–487 (1993). doi:10.1007/BF01025049.

    Article  PubMed  CAS  Google Scholar 

  34. M. A. Winters, B. L. Knutson, P. G. Debenedetti, H. G. Sparks, T. M. Przybycien, C. L. Stevenson, and S. J. Prestrelski. Precipitation of proteins in supercritical carbon dioxide. J. Pharm. Sci. 85:586–594 (1996). doi:10.1021/js950482q.

    Article  PubMed  CAS  Google Scholar 

  35. G. Vecchio, A. Bossi, P. Pasta, and C. Carrea. Fourier-transform infrared conformational study of bovine insulin in surfactant solutions. Int. J. Pept. Protein Res. 48:113–117 (1996).

    PubMed  CAS  Google Scholar 

  36. H.-K. Chan, A. R. Clark, J. C. feeley, M.-C. Kuo, S. R. Lehrman, K. Pikal-Cleland, D. P. Miller, R. Vehring, and D. Lechuga-Ballesteros. Physical stability of salmon calcitonin spray-dried powders for inhalation. J. Pharm. Sci. 93:792–804 (2004). doi:10.1002/jps.10594.

    Article  PubMed  CAS  Google Scholar 

  37. M. J. Pikal and D. R. Rigsbee. The stability of insulin in crystalline and amorphous solids: observation of greater stability for the amorphous form. Pharm. Res. 14:1379–1387 (1997). doi:10.1023/A:1012164520429.

    Article  PubMed  CAS  Google Scholar 

  38. B. Shenoy, Y. Wang, W. Shan, and A. L. Margolin. Stability of crystalline proteins. Biotechnol. Bioeng. 73:358–369 (2001). doi:10.1002/bit.1069.

    Article  PubMed  CAS  Google Scholar 

  39. C. J. Roberts and P. G. Debenedetti. Engineering pharmaceutical stability with amorphous solids. AIChE J. 48(6):1140–1144 (2002).

    Article  CAS  Google Scholar 

  40. B. C. Hancock and M. Parks. What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17(4):397–404 (2000). doi:10.1023/A:1007516718048.

    Article  PubMed  CAS  Google Scholar 

  41. B. C. Hancock and G. Zografi. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 86(1):1–12 (1997). doi:10.1021/js9601896.

    Article  PubMed  CAS  Google Scholar 

  42. J. F. Carpenter and J. H. Crowe. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 28:3916–3922 (1989). doi:10.1021/bi00435a044.

    Article  PubMed  CAS  Google Scholar 

  43. T. Arakawa, S. J. Prestrelski, W. C. Kenney, and J. F. Carpenter. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Reiv. 10:1–28 (1993). doi:10.1016/0169-409X(93)90003-M.

    Article  CAS  Google Scholar 

  44. Powder diffraction file. Organic and Organometallic Phases. JCPDS International Center for Diffraction Data, Swarthmore, 1987.

    Google Scholar 

Download references

Acknowledgments

Support from the WiSE program at USC is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine S. Shing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.H., Sioutas, C. & Shing, K.S. Influence of Stabilizers on the Physicochemical Characteristics of Inhaled Insulin Powders Produced by Supercritical Antisolvent Process. Pharm Res 26, 61–71 (2009). https://doi.org/10.1007/s11095-008-9708-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9708-y

KEY WORDS

Navigation