Skip to main content
Log in

Combination Antifungal Therapy Involving Amphotericin B, Rapamycin and 5-Fluorocytosine Using PEG-Phospholipid Micelles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Rapamycin and 5-fluorocytosine (5-FC) are antifungal agents with unique mechanisms of activity, with potential for cooperative interaction with AmB. Combination antifungal therapy involving conventional AmB has been restricted by poor physical stability and compatibility with antifungal drugs and vehicles.

Methods

AmB and rapamycin were encapsulated in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy poly(ethylene glycol) (PEG-DSPE) micelles using a solvent evaporation method. The physical stability of micelle encapsulated AmB and rapamycin with 5-FC and saline was evaluated using dynamic light scattering (DLS). In vitro susceptibility of Candida albicans isolates to 5-FC and PEG-DSPE micelle solubilized AmB and rapamycin has been evaluated. Interactive effects have been quantified using a checkerboard layout.

Results

In contrast with conventional AmB, PEG-DSPE micelles encapsulating AmB and rapamycin are compatible with saline and 5-FC over 12 h. The solubilized drugs retain high level of potency in vitro. The combination of solubilized AmB and rapamycin was indifferent, as fractional inhibitory concentration (FIC) index and combination index (CI) values were approximately 1. Combinations of solubilized AmB or rapamycin with 5-FC, and the three-drug combination were moderately synergistic since the FIC index and CI values were consistent less than 1.

Conclusions

These results indicate that AmB solubilized in PEG-DSPE micelles is compatible with solubilized rapamycin and 5-FC. The indifferent or moderately synergistic activity of combinations is encouraging and warrants further investigation in appropriate rodent models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Gudlaugsson, S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer, L. Herwaldt, M. Pfaller, and D. Diekema. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37:1172–1177 (2003).

    Article  PubMed  Google Scholar 

  2. B. Spellberg, S. Filler, and J. Edwards. Current treatment strategies for disseminated candidiasis. Clin. Infect. Dis. 42:244–251 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. B. Dupont. Overview of the lipid formulations of amphotericin B. J. Antimicrob. Chemother. 49(Suppl. 1):31–36 (2002).

    PubMed  CAS  Google Scholar 

  4. T. Walsh, R. Finberg, C. Arndt, J. Hiemenz, C. Schwartz, D. Bodensteiner, P. Pappas, N. Seibel, R. Greenberg, S. Dummer, M. Schuster, J. Holcenberg, and W. Dismukes. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N. Engl. J. Med. 340:764–771 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. M. Johnson, C. Macdougall, L. Ostrosky-Zeichner, J. Perfect, and J. Rex. Combination antifungal therapy. Antimicrob. Agents Chemother. 48:693–715 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. P. Mukherjee, D. Sheehan, C. Hitchcock, and M. Ghannoum. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 18:163–194 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. H. Kume, S. Murase, and M. Mochizuki. Combined effect of antifungal agents—Fundamental study on amphotericin B and flucytosine. Jpn. J. Med. Mycol. 26:126–132 (1985).

    CAS  Google Scholar 

  8. J. Sobel. Combination therapy for invasive mycoses: Evaluation of past clinical trial designs. Clin. Infect. Dis. 39(Suppl. 4):S224–S227 (2004).

    Article  PubMed  Google Scholar 

  9. J. Arroyo, G. Medoff, and G. Kobayashi. Therapy of murine aspergillosis with amphotericin B in combination with rifampin of 5-fluorocytosine. Antimicrob. Agents Chemother. 11:21–25 (1977).

    PubMed  CAS  Google Scholar 

  10. D. Te Dorsthorst, P. Verweij, J. Meletiadis, M. Bergervoet, N. Punt, J. Meis, and J. Mouton. In vitro interaction of flucytosine combined with amphotericin B or fluconazole against thirty-five yeast isolates determined by both the fractional inhibitory concentration index and the response surface approach. Antimicrob. Agents Chemother. 46:2982–2989 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. G. Medoff, G. Kobayashi, C. Kwan, D. Schlessinger, and P. Venkov. Potentiation of rifampicin and 5-fluorocytosine as antifungal antibiotics by amphotericin B (yeast-membrane permeability-ribosomal RNA-eukaryotic cell-synergism). Proc. Natl. Acad. Sci. 69:196–199 (1972).

    Article  PubMed  CAS  Google Scholar 

  12. W. Hope, P. Warn, A. Sharp, P. Reed, B. Keevil, A. Louie, D. Denning, and G. Drusano. Surface response modeling to examine the combination of amphotericin B deoxycholate and 5-fluorocytosine for treatment of invasive candidiasis. J. Infect. Dis. 192:673–680 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. C. Vezina, A. Kudelski, and S. Sehgal. Rapamycin (AY-22,989), a new antifungal antibiotic I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiotics 28:721–726 (1975).

    CAS  Google Scholar 

  14. H. Baker, A. Sidorowicz, S. Sehgal, and C. Vezina. Rapamycin (AY-22,989), a new antifungal antibiotic III. In vitro and in vivo evaluation. J. Antibiotics 31:539–545 (1978).

    CAS  Google Scholar 

  15. B. Kahan, and J. Camardo. Rapamycin: Clinical results and future opportunities. Transplantation 72:1181–1193 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. D. Dickman, H. Ding, Q. Li, A. Nilius, D. Balli, S. Ballaron, J. Trevillyan, M. Smith, L. Seif, L. Kim, A. Sarthy, R. Goldman, J. Plattner, and Y. Bennani. Antifungal rapamycin analogues with reduced immunosuppressive activity. Bioorg. Med. Chem. Lett. 10:1405–1408 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. J. Rohde, J. Heitman, and M. Cardenas. The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276:9583–9586 (2001).

    Article  PubMed  CAS  Google Scholar 

  18. P. Simamora, J. Alvarez, and S. Yalkowsky. Solubilization of rapamycin. Int. J. Pharm. 213:25–29 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. A. Imhof, R. Walter, and A. Schaffner. Continuous infusion of escalated doses of amphotericin B deoxycholate: An open-label observational study. Clin. Infect. Dis. 36:943–951 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. U. Eriksson, B. Seifer, and A. Schaffner. Comparison of effects of amphotericin B deoxycholate infused over 4 to 24 hours: Randomized controlled trial. Br. Med. J. 322:579–582 (2001).

    Article  CAS  Google Scholar 

  21. A. Peleg, and M. Woods. Continuous and 4 h infusion of amphotericin B: A comparative study involving high-risk haematology patients. J. Antimicrob. Chemother. 54:803–808 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. R. Lewis, and N. Wiederhold. The solubility ceiling: a rationale for continuous infusion of amphotericin B therapy? Clin. Infect. Dis. 37:871–872 (2003).

    Article  PubMed  Google Scholar 

  23. A. Llanos, J. Cieza, and J. Berando. Effect of salt supplementation on amphotericin nephrotoxicity. Kidney Int. 40:302–308 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. R. Jurgens, P. Deluca, and D. Papadimitriou. Compatibility of amphotericin B with certain large-volume parenterals. Am. J. Hospital Pharm. 38:377–378 (1981).

    CAS  Google Scholar 

  25. R. Vakil, and G. Kwon. PEG-phospholipid micelles for the delivery of amphotericin B. J. Control. Release 101:386–389 (2005).

    PubMed  CAS  Google Scholar 

  26. R. Vakil, and G. Kwon. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles. Mol. Pharm. 5:98–104 (2007), DOI 10.1021/mp700081v.

    Article  PubMed  CAS  Google Scholar 

  27. R. Vakil, A. Kuldipkumar, D. Andes, Y. Tan, and G. Kwon. Polymeric micelles for the delivery of polyene antibiotics. In S. Svenson (ed.), Polymeric drug delivery Vol. I.—Particulate carriers, ACS Symposium Series, Vol. 923, New York, 2006, pp. 14–26.

  28. M. Pfaller. Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard. M27-A2, Vol. 22. National Committee for Clinical Laboratory Standards, Wayne, 2002.

    Google Scholar 

  29. T.-C. Chou, and P. Talalay. Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22:27–55 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. T.-C. Chou, and P. Talalay. Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur. J. Biochem. 115:207–216 (1981).

    Article  PubMed  CAS  Google Scholar 

  31. Instructions to Authors. Antimicrob. Agents Chemother. 50:1–21 (2006).

    Article  CAS  Google Scholar 

  32. F. Odds. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52:1 (2003).

    Article  PubMed  Google Scholar 

  33. T.-C. Chou. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58:621–681 (2006).

    Article  PubMed  CAS  Google Scholar 

  34. M. Espuelas, P. Legrand, M. Campanero, M. Appel, M. Cheron, C. Gamazo, G. Barratt, and J. Irache. Polymeric carriers for amphotericin B: In vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J. Antimicrob. Chemother. 52:419–427 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. Z. Nakagawa, M. Nucci, M. Branchini, R. Salomao, R. Richtmann, and A. Colombo, A. In vitro susceptibility patterns of 200 recent bloodstream isolates of Candida species to four antifungal drugs determined by the NCCLS microbroth procedure. In Intersci. Conf. Antimicrob. Agents Chemother. (1998).

  36. M. Ghannoum, M. Motawy, M. Abu Hatab, A. Ibrahim, and R. Criddle. Multifactorial analysis of effects of interactions among antifungal and antineoplastic drugs on inhibition of Candida albicans growth. Antimicrob. Agents Chemother. 33:717–725 (1989).

    PubMed  CAS  Google Scholar 

  37. W. Greco, G. Bravo, and J. Parsons. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev. 47:331–385 (1995).

    PubMed  CAS  Google Scholar 

  38. W. Greco, H. Park, and Y. Rustum. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-d-arabinofuranosylcytosine. Cancer Res. 50:5318–5327 (1990).

    PubMed  CAS  Google Scholar 

  39. W. Steinbach, W. Schell, J. Blankenship, C. Onyewu, J. Heitman, and J. Perfect. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob. Agents Chemother. 48:1664–1669 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. S. Shadomy, G. Wagner, E. Espinel-Ingroff, and B. Davis. In vitro studies with combinations of 5-fluorocytosine and amphotericin B. Antimicrob. Agents Chemother. 8:117–121 (1975).

    PubMed  CAS  Google Scholar 

  41. M. Ghannoum, M. Motawy, M. Abu Hatab, K. Abu Elteen, and R. Criddle. Interactive effects of antifungal and antineoplastic agents on yeasts commonly prevalent in cancer patients. Antimicrob. Agents Chemother. 33:726–730 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen S. Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakil, R., Knilans, K., Andes, D. et al. Combination Antifungal Therapy Involving Amphotericin B, Rapamycin and 5-Fluorocytosine Using PEG-Phospholipid Micelles. Pharm Res 25, 2056–2064 (2008). https://doi.org/10.1007/s11095-008-9588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9588-1

KEY WORDS

Navigation