Skip to main content
Log in

Prolonging the In Vivo Residence Time of Prostaglandin E1 with Biodegradable Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Prostaglandins have potent and diverse biologic activities, but their clinical application is severely restricted, mainly due to rapid inactivation in vivo. In order to modulate the pharmacokinetics of prostaglandin E1 (PGE1), we prepared biodegradable nanoparticles as a drug carrier.

Methods

Nanoparticles encapsulating PGE1 were prepared from a blend of poly(lactic acid) homopolymer and poly(ethylene glycol)-poly(lactide) block copolymer by the solvent diffusion method in the presence of iron.

Results

PGE1 was efficiently and stably embedded in the nanoparticles through interaction with iron, despite being relatively hydrophilic and having unstable chemical properties. Depending on the isomers and molecular weight of poly(lactic acid) selected, PGE1 was gradually released from the nanoparticles at various rates into diluted serum in vitro. Both stable retention of PGE1 in the nanoparticles and coating of the nanoparticles with poly(ethylene glycol) led to an extremely extended blood residence time of PGE1, as well as preferential accumulation in vascular lesions.

Conclusions

These results suggest that the present strategy is useful to advance the clinical application of PGE1 as a therapeutic agent for vascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. M. Kerins, R. Murray, and G. A. FitzGerald. Prostacyclin and prostaglandin E1: molecular mechanisms and therapeutic utility. Prog. Hemost. Thromb. 10:307–337 (1991).

    PubMed  CAS  Google Scholar 

  2. A. Creutzig, and L. Caspary. Prostanoids in therapy of peripheral arterial occlusive disease. Therapie 46:241–245 (1991).

    PubMed  CAS  Google Scholar 

  3. M. Golub, P. Zia, M. Matsuno, and R. Horton. Metabolism of prostaglandins A1 and E1 in man. J. Clin. Invest. 56:1404–1410 (1975).

    Article  PubMed  CAS  Google Scholar 

  4. M. Bygdeman. Pharmacokinetics of prostaglandins. Best Pract. Res. Clin. Obstet Gynaecol. 17:707–716 (2003).

    Article  PubMed  Google Scholar 

  5. G. Bianchi Porro, and F. Parente. Side effects of anti-ulcer prostaglandins: an overview of the worldwide clinical experience. Scand. J. Gastroenterol. 24:224–229 (1989).

    Article  Google Scholar 

  6. G. Holló. The side effects of the prostaglandin analogues. Expert Opin. Drug Saf. 6:45–52 (2007).

    Article  PubMed  Google Scholar 

  7. Y. Mizushima, A. Yanagawa, and K. Hoshi. Prostaglandin E1 is more effective, when incorporated in lipid microspheres, for treatment of peripheral vascular diseases in man. J. Pharm. Pharmacol. 35:666–667 (1983).

    PubMed  CAS  Google Scholar 

  8. Y. Mizushima. Lipo-prostaglandin preparations. Prostaglandins Leukot. Essent. Fatty Acids 42:1–6 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. T. Yamaguchi, and Y. Mizushima. Lipid microspheres for drug delivery from the pharmaceutical viewpoint. Crit. Rev. Ther. Drug Carrier Syst. 11:215–229 (1994).

    PubMed  CAS  Google Scholar 

  10. D. F. Eierman, M. Yagami, S. M. Erme, S. R. Minchey, P. A. Harmon, K. J. Pratt, and A. S. Janoff. Endogenously opsonized particles divert prostanoid action from lethal to protective in models of experimental endotoxemia. Proc. Natl. Acad. Sci. U S A 92:2815–2819 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. S. Feld, G. Li, J. Amirian, P. Felli, W. K. Vaughn, M. Accad, T. R. Tolleson, C. Swenson, M. Ostro, and R. W. Smalling. Enhanced thrombolysis, reduced coronary reocclusion and limitation of infarct size with liposomal prostaglandin E1 in a canine thrombolysis model. J. Am. Coll. Cardiol. 24:1382–1390 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. H. Pan, P. Kopecková, J. Liu, D. Wang, S. C. Miller, and J. Kopecek. Stability in plasmas of various species of HPMA copolymer-PGE(1) conjugates. Pharm Res. 24:2270–2280 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. K. Akamatsu, Y. Yamasaki, M. Nishikawa, Y. Takakura, and M. Hashida. Synthesis and pharmacological activity of a novel water-soluble hepatocyte-specific polymeric prodrug of prostaglandin E(1) using lactosylated poly(l-glutamic hydrazide) as a carrier. Biochem. Pharmacol. 62:1531–1536 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. Y. Mizushima, T. Hamano, S. Haramoto, S. Kiyokawa, A. Yanagawa, K. Nakura, M. Shintome, and M. Watanabe. Distribution of lipid microspheres incorporating prostaglandin E1 to vascular lesions. Prostaglandins Leukot. Essent. Fatty Acids 41:269–272 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. S. Kawakami, C. Munakata, S. Fumoto, F. Yamashita, and M. Hashida. Targeted delivery of prostaglandin E1 to hepatocytes using galactosylated liposomes. J. Drug Target. 8:137–142 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. R. Igarashi, Y. Mizushima, M. Takenaga, K. Matsumoto, Y. Morizawa, and A. Yasuda. A stable PGE1 prodrug for targeting therapy. J. Control. Release 20:37–46 (1992).

    Article  CAS  Google Scholar 

  17. C. E. Astete, and C. M. Sabliov. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17:247–289 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release 65:271–284 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. K. Avgoustakis. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1:321–333 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. S. J. Douglas, S. S. Davis, and L. Illum. Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 3:233–261 (1987).

    PubMed  CAS  Google Scholar 

  22. H. Okada, and H. Toguchi. Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 12:1–99 (1995).

    PubMed  CAS  Google Scholar 

  23. C. E. Astete, and C. M. Sabliov. Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17:247–289 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. T. Ishihara, N. Izumo, M. Higaki, E. Shimada, T. Hagi, L. Mine, Y. Ogawa, and Y. Mizushima. Role of zinc in formulation of PLGA/PLA nanoparticles encapsulating betamethasone phosphate and its release profile. J. Control. Release 105:68–76 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. M. Higaki, T. Ishihara, N. Izumo, M. Takatsu, and Y. Mizushima. Treatment of experimental arthritis with poly(d, l-lactic/glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann. Rheum. Dis. 64:1132–1136 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. E. Pişkin, X. Kaitian, E. B. Denkbaş, and Z. Küçükyavuz. Novel PDLLA/PEG copolymer micelles as drug carriers. J. Biomater. Sci. Polym. Ed. 7:359–373 (1995).

    PubMed  Google Scholar 

  27. T. Riley, S. Stolnik, C. R. Heald, C. D. Xiong, M. C. Garnett, L. Illum, and S. S. Davis. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) block copolymers as drug delivery vehicles. Langmuir 17:3168–3174 (2001).

    Article  CAS  Google Scholar 

  28. S. Kamei, Y. Inoue, H. Okada, M. Yamada, Y. Ogawa, and H. Toguchi. New method for analysis of biodegradable polyesters by high-performance liquid chromatography after alkali hydrolysis. Biomaterials 13:953–958 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. S. Ashida, M. Ishihara, H. Ogawa, and Y. Abiko. Protective effect of ticlopidine on experimentally induced peripheral arterial occlusive disease in rats. Thromb Res. 18:55–67 (1980).

    Article  PubMed  CAS  Google Scholar 

  30. H. Hara, H. Shimada, A. Kitajima, and Y. Tamao. Effect of (+/−)-2-(dimethylamino)-1-[[o-(m-methoxyphenethyl)phenoxy] methyl]ethyl hydrogen succinate on experimental models of peripheral obstructive disease. Arzneimittelforschung 41:616–620 (1991).

    PubMed  CAS  Google Scholar 

  31. C. M. Flynn. Hydrolysis of inorganic iron(III) salts. Chem. Rev. 84:31–41 (1984).

    Article  CAS  Google Scholar 

  32. T. Liu, and E. S. Chian. Effect of base addition rate on the preparation of partially neutralized ferric chloride solutions. J. Colloid Interface Sci. 284:542–547 (2005).

    Article  PubMed  CAS  Google Scholar 

  33. L. Weiss, and J. R. Subjeck. The densities of colloidal iron hydroxide particles bound to microvilli and the spaces between them: studies on glutaraldehyde-fixed ehrlich ascites tumor cells. J. Cell Sci. 14:215–223 (1974).

    PubMed  CAS  Google Scholar 

  34. G. A. Parks. The isoelectric points of solid oxides, solid hydroxides, and aqueous hyrdoxo complex systems. Chem. Rev. 65:177–198 (1965).

    Article  CAS  Google Scholar 

  35. H. Murakami, M. Kobayashi, H. Takeuchi, and Y. Kawashima. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 187:143–52 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. Y. Dong, and S. S. Feng. Nanoparticles of poly(d,l-lactide)/methoxy poly(ethylene glycol)-poly(d,l-lactide) blends for controlled release of paclitaxel. J. Biomed. Materials Res. A. 78:12–19 (2006).

    Article  CAS  Google Scholar 

  37. H. Okada, M. Yamamoto, T. Heya, Y. Inoue, S. Kamei, Y. Ogawa, and H. Toguchi. Drug delivery using biodegradable microspheres. J. Control. Release 28:121–129 (1994).

    Article  CAS  Google Scholar 

  38. R. Jalil, and J. R. Nixon. Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties. J. Microencapsul. 7:297–325 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. V. C. Mosqueira, P. Legrand, J. L. Morgat, M. Vert, E. Mysiakine, R. Gref, J. P. Devissaguet, and G. Barratt. Biodistribution of long-circulating PEG-grafted nanocapsules in mice: effects of PEG chain length and density. Pharm Res. 18:1411–1419 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Clinical report (Kiso to Rinsho). 20:4399–4428 (1986). (written in Japanese)

  41. M. S. Shive, and J. M. Anderson. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28:5–24 (1997).

    Article  PubMed  Google Scholar 

  42. J. P. Plard, and D. Bazile. Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat. Colloids Surf. B biointerfaces 16:173–183 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sachiyo Shibata, Tetsushi Kubota and Yukie Tokura for their assistance with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Ishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, T., Takahashi, M., Higaki, M. et al. Prolonging the In Vivo Residence Time of Prostaglandin E1 with Biodegradable Nanoparticles. Pharm Res 25, 1686–1695 (2008). https://doi.org/10.1007/s11095-008-9549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9549-8

Key words

Navigation