Skip to main content

Advertisement

Log in

Poly (Lactide-co-Glycolide) Microspheres in Respirable Sizes Enhance an In Vitro T Cell Response to Recombinant Mycobacterium tuberculosis Antigen 85B

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the use of poly (lactide-co-glycolide) (PLGA) microparticles in respirable sizes as carriers for Antigen 85B (Ag85B), a secreted protein of Mycobacterium tuberculosis, with the ultimate goal of employing them in pulmonary delivery of tuberculosis vaccine.

Materials and Methods

Recombinant Ag85B was expressed from two Escherichia coli strains and encapsulated by spray-drying in PLGA microspheres with/without adjuvants. These microspheres containing rAg85B were assessed for their ability to deliver antigen to macrophages for subsequent processing and presentation to the specific CD4 T-hybridoma cells DB-1. DB-1 cells recognize the Ag85B97–112 epitope presented in the context of MHC class II and secrete IL-2 as the cytokine marker.

Results

Microspheres suitable for aerosol delivery to the lungs (3.4–4.3 μm median diameter) and targeting alveolar macrophages were manufactured. THP-1 macrophage-like cells exposed with PLGA-rAg85B microspheres induced the DB-1 cells to produce IL-2 at a level that was two orders of magnitude larger than the response elicited by soluble rAg85B. This formulation demonstrated extended epitope presentation.

Conclusions

PLGA microspheres in respirable sizes were effective in delivering rAg85B in an immunologically relevant manner to macrophages. These results are a foundation for further investigation into the potential use of PLGA particles for delivery of vaccines to prevent M. tuberculosis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. W. Olsen, and P. Andersen. A novel TB vaccine; strategies to combat a complex pathogen. Immuno.l Lett. 85(2):207–211 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. L. Brandt, T. Oettinger, A. Holm, et al. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. J. Immunol. 157:3527–3533 (1996).

    PubMed  CAS  Google Scholar 

  3. I. Rosenkrands, P. B. Rasmussen, M. Carnio, et al. Identification and characterization of a 29KD protein from mycobacterium tuberculosis culture filtrate recognized by mouse memory effecter cells. Infect. Immun. 66:2728–2735 (1998).

    PubMed  CAS  Google Scholar 

  4. F. X. Berthet, P. B. Rasmussen, I. Rosenkrands, et al. A mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology. 144:3195–3203 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. A. S. Mustafa. Development of new vaccines and diagnostic reagents against tuberculosis. Molec. Immunol. 39:113–119 (2002).

    Article  CAS  Google Scholar 

  6. T. M. Doherty, A. W. Olsen, L. van Pinxteren, et al. Oral vaccination with subunit vaccines protects animals against aerosol infection with mycobacterium tuberculosis. Infect. Immun. 70:3111–3121 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. L. Brandt, Y. A. W. Skeiky, and M. R. Alderson. The protective effect of the mycobacterium bovis BCG vaccine is increased by coadminstration with the mycobacterium tuberculosis 72KD fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect. Immun. 72(11):6622–6632 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. H. McShane, R. Brookes, S. C. Gilbert, et al. Enhanced immunogenicity of CD4+ T-Cell responses and protective efficacy of a DNA-modified vaccinia virus Ankara prime-boost vaccination regimen for murine tuberculosis. Infect. Immun. 69:681–686 (2001).

    Article  PubMed  CAS  Google Scholar 

  9. P. F. Barnes, A. B. Bloch, P. T. Davidson, et al. Tubercuslosis in patients with human immunodeficiency virus infection. N. Engl. J. Med. 324:1644–1650 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. D. V. Havlir, R. S. Wallis, W. H. Boom, et al. Human immune responses to mycobacterium tuberculosis antigens. Infect. Immun. 59:665–670 (1991).

    PubMed  CAS  Google Scholar 

  11. J. T. Belisle, V. D. Vissa, and T. Sievert. Role of the major antigen of mycobacterium tuberculosis in cell wall biogenesis. Science. 276:1420–1422 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. D. R. Ronning, V. Vissa, and G. S. Besra. Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity. J. BiolChem. 279(35):36771–36777 (2004).

    CAS  Google Scholar 

  13. M. Daffe. The mycobacterial antigen 85 complex—from structure to function and beyond. Trends Microbiol. 8:438–440 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. H. G. Wiker, and M. Harboe. The anitgen 85 comlex: a major secretion product of mycobacterium tuberculosis. Microbiol. Rev. 56:648–661 (1992).

    PubMed  CAS  Google Scholar 

  15. S. L. Baldwin, C. D. D’Souza, and I. M. Orme. Immunogenicity and protective efficacy of DNA vaccines encoding secreted and non-secreted forms of Mycobacterium tuberculosis Ag85A. Tuber. Lung Dis. 79:251–259 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. O. Denis, A. Tanghe, and K. Palfliet. Vaccination with plasmid DNA encoding mycobacterial antigen 85A stimulates a CD4+ and CD8+ T-cell epitopic repertoire broader than that stimulated by Mycobacterium tuberculosis H37Rv infection. Infect. Immun. 66:1527–1533 (1998).

    PubMed  CAS  Google Scholar 

  17. J. B. Ulmer, M. A. Liu, and D. L. Montgomery. Expression and immunogenicity of Mycobacterium tuberculosis antigen 85 by DNA vaccination. Vaccine. 15:792–794 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. E. Lozes, K. Huygen, J. Content, et al. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine. 15:830–833 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. M. A. Horwitz, G. Harth, B. J. Dillon, et al. Recombinant bacillus Calmette-Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. U. S. A. 97:13853–13858 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. K. Miki, T. Nagata, T. Tanaka, et al. Induction of protective cellular immunity against Mycobacterium tuberculosis by recombinant attenuated self-destructing Listeria monocytogenes strains harboring eukaryotic expression plasmids for antigen 85 complex and MPB/MPT51. Infect. Immun. 72(4):2014–2021 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. A. W. Olsen, L. A. H. van Pinxtern, P. B. Rasmussen, et al. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT 6. Infect. Immun. 69(5):2773–2778 (2001).

    Article  CAS  Google Scholar 

  22. G. Harth, B. Y. Lee, J. Wang, et al. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect. Immun. 64:3038–3047 (1996).

    PubMed  CAS  Google Scholar 

  23. B. Y. Lee, and W. A. Horwitz. Identification of macrophage and stress-induced protiens of Mycobacteruim tuberculosis. J. Clin. Invest. 96:245–249 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. M. A. Horwitz, B. W. Lee, B. J. Dillon, et al. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 92:1530–1534 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. K. Salim, V. Haedens, J. Content, et al. Heterologous expression of the mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum. Appl. Envir. Microbiol. 63(11):4392–4400 (1997).

    CAS  Google Scholar 

  26. J. H. Eldridge, J. K. Staas, J. A. Meulbroek, et al. Biodegradable microspheres as a vaccine delivery system. Molecul. Immunol. 28(3):287–294 (1991).

    Article  CAS  Google Scholar 

  27. W. Jiang, R. K. Gupta, M. C. Deshpade, et al. Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv. Drug. Deliv. Rev. 57:391–410 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. H. O. Alpar, S. Somavarapu, K. N. Atuah, et al. Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery. Adv. Drug. Deliv. Rev. 57:411–430 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. H. Tamber, P. Johansen, H. Merkle, et al. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv. Drug. Deliv. Rev. 57:357–376 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. R. Audran, K. Peter, J. Dannull, et al. Encapsulation of peptides in biodegrable microspheres prolongs their MHC class I presentation by dendritic cells and macrphages in vitro. Vaccine. 21:1250–1255 (2003).

    Article  PubMed  CAS  Google Scholar 

  31. H. M. Vordermeier, A. G. A. Coombes, P. Jenkins, et al. Synthetic delivery system for tuberculosis vaccines: immunological evaluation of the M.tuberculosis 38kDa protein entrapped in biodegrable PLG microspheres. Vaccine. 13:1576–1582 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Y. Men, R. Audran, C. Thomasin, et al. MHC class I- and class II- restricted processing and presentation of microencapsulated antigens. Vaccine. 17:1047–1056 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. D. T. O’Hagan, M. Singh, and R. K. Gupta. Poly(lactide-co-glycolide) microspheres for the development of single-dose controlled-release vaccines. Adv. Drug. Deliv. Rev. 32:225–2246 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. R. K. Gupta, and G. R. Siber. Adjuvants for human vaccines—current status, problems and future prospects. Vaccine. 13:1263–1276 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. A. Raychaudhuri, and K. L. Rock. Fully mobilizing host defense: Building better vaccines. Nat. Biotechnol. 16:1025–1031 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. P. K. Gupta and A. J. Hickey. Contemporary approaches in aerosolized drug delivery to the lung. J. Control. Release. 17(2):127–147 (1991).

    Article  CAS  Google Scholar 

  37. P. Gehr, M. Geiser, and V. ImHof. Surfactant and inhaled particles in the conducting airways: structural, stereological, and biophysical aspects. Microsc. Res. Tech. 26(5):423–436 (1993).

    Article  PubMed  CAS  Google Scholar 

  38. P. Bezdicek, and R. G. Crystal. Pulmonary macrophages. 2nd ed. In R. G. Crystal, J. B. West, et al. (eds.), The Lung: Scientific Foundations, Lippincott: Philadelphia, 1997, pp. 859–875.

    Google Scholar 

  39. Y. Men, B. Gander, H. P. Merkle, et al. Induction of sustained and elevated immune response to weakly immunogenic synthetic material peptides by encapsulation in biodegrable polymer microspheres. Vaccine. 14:1442–1450 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. R. Shahin, M. Leef, J. Eldridge, et al. Adjuvanticity and protective immunity elicited by bordelella pertussis antigens encapsulated in poly(dl-lactide-xo-glycolide) microspheres. Infect. Immun. 63:1195–1200 (1995).

    PubMed  CAS  Google Scholar 

  41. D. L. Lakey, R. K. R. Voladri, K. M. Edwards, et al. Enhanced production of recombinant mycobacterium tuberculosis antigens in E coli by replacement of low-usage codons. Infect. Immun. 68(1):233–238 (2000).

    PubMed  CAS  Google Scholar 

  42. D. H. Canaday, A. J. Gehring, E. G. Leonard, et al. T-cell hybridomas from HLA-transgenic mice as tools for analysis of human antigen processing. J. Immunol. Methods. 281(1–2):129–142 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. A. J. Gehring, R. E. Rojas, D. H. Canaday, et al. The mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and FcgR1 on human macrophages through toll-like receptor 2. Infect Immun. 71(8):4487–4497 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. M. F. Powell, L. C. Foster, A. R. Becker, et al. Formulation of vaccine adjuvant muramyldipeptides (MDP). 2. The thermal reactivity and pH of maximum stability of MDP compounds in aqueous solution. Pharm. Res. 5(8):528–532 (1988).

    Article  PubMed  CAS  Google Scholar 

  45. G. S. Ritzinger, S. C. Meredith, K. Takayama, et al. The role of surface in the biological activities of trehalose 6,6′-dimycolate. J. Biol. Chem. 256(15):8208–8216 (1981).

    Google Scholar 

  46. A. J. Hickey, N. M. Concessio, and M. M. OrtVan. Factors influencing the dispersion of dry powders as aerosols. Pharm. Technol. 18:58–64 (1994).

    Google Scholar 

  47. P. H. Bessette, F. Åslund, B. Beckwith, et al. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. U. S. A. 96:13703–13708 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. F. U. Hartl and M. Hayer-Hartl. Molecular chaperones in the cytosol: from nacent chain to folded protein. Science. 295:1852–1858 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. D. J. Marciani. Vaccien adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov. Today. 8(20):934–943 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. H. Takada, S. Yokoyama, and S. Yang. Enhancement of endotoxin activity by muramyl dipeptide. J. Endotoxin Res. 8(5):337–342 (2002).

    PubMed  CAS  Google Scholar 

  51. H. Takada and C. Galanos. Enhancement of endotoxin lethality and generation of anaphylactoid reactions by lipopolysaccharides in muramyl-dipeptide-treated mice. Infect. Immun. 55(2):409–413 (1987).

    PubMed  CAS  Google Scholar 

  52. B. G. Jones, P. A. Dickinson, M. Gumbleton, et al. Lung surfactant phospholipids inhibit the uptake of respirable microspheres by the alveolar macrophages NR8383. J. Pharm. Pharmacol. 54:1065–1072 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. C. Evora, I. Sorino, R. A. Rogers, et al. Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J. Control. Release. 51:143–152 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. B. G. Jones, Dickinson, P. A., Gumbleton, M., and Kellaway, I. W. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Inter. J. Pharm. 236:65–79 (2002).

    Article  CAS  Google Scholar 

  55. K. Sugiyama, S. Mitsuno, and K. Shiraishi. Adsorption of protein on the surface of thermosensitive poly (methyl methacrylate) microspheres modified with the N-(2-Hydroxypropyl) methacrylamide and 2- (Methacryloyloxy) ethyl Phosphorylcholine moieties. J. Polymer. Sci: Part A: Polymer Chem. 35:3349–3357 (1996).

    Article  Google Scholar 

  56. T. Basinska. Adsorption studies of human serum albumin, human gama-globulins, and human fibrinogen on the surface of P(S/PGL) microsphere. J. Biomater. Sci. Polymer Edn. 12(12):1359–1371 (2001).

    Article  CAS  Google Scholar 

  57. C. Witt and T. Kissel. Morphological characterization of microspheres, films and implants prepared from poly(lactide-co-glycolide) and ABA triblock copolymers: is the erosion controlled by degradation, swelling or diffusion? Eur. J. Pharm. Biopharm. 51(3):171–181 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. L. Vidard, M. Kovacsovics-Bankowski, S.-K. Kraeft, et al. Analysis of MHC class II presentation of particulate antigens by B lymphocytes. J. Immunol. 156:2809–2818 (1996).

    PubMed  CAS  Google Scholar 

  59. A. J. Sant, F. A. Chaves, S. A. Jenks, et al. The relationship between immunodominance, DM editing, and the kinetic stability of MHC class II:peptide complexes. Immunol. Rev. 207:261–278 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. M. T. Valle, A. M. Megiovanni, A. Merlo, et al. Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clin. Exp. Immunol. 123(2):226–232 (2001).

    Article  PubMed  CAS  Google Scholar 

  61. M. Torres, L. Ramachandra, R. E. Rojas, et al. Role of phagosomes and major histocompatibility complex class II (MHC-II) compartment in MHC-II antigen processing of Mycobacterium tuberculosis in human macrophages. Infect. Immun. 74(3):1621–1630 (2006).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the donation of: E. coli JM109DE strain carrying Ag85B gene vector by Dr Douglas Kernodle in Vanderbilt University; and T-hybridoma cells DB1 by Dr W. Henry Boom in Case Western Reserve University. The work was supported by a grant NHLB1, HL67221. Dongmei Lu’s financial aid is from PHRMA foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, D., Garcia-Contreras, L., Xu, D. et al. Poly (Lactide-co-Glycolide) Microspheres in Respirable Sizes Enhance an In Vitro T Cell Response to Recombinant Mycobacterium tuberculosis Antigen 85B. Pharm Res 24, 1834–1843 (2007). https://doi.org/10.1007/s11095-007-9302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9302-8

Key words

Navigation