Skip to main content

Advertisement

Log in

Population Pharmacokinetic/Pharmacodynamic Modeling of Systemic Corticosteroid Inhibition of Whole Blood Lymphocytes: Modeling Interoccasion Pharmacodynamic Variability

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a population pharmacokinetic/pharmacodynamic (PK/PD) model that characterizes the effects of major systemic corticosteroids on lymphocyte trafficking and responsiveness.

Materials and Methods

Single, presumably equivalent, doses of intravenous hydrocortisone (HC), dexamethasone (DEX), methylprednisolone (MPL), and oral prednisolone (PNL) were administered to five healthy male subjects in a five - way crossover, placebo - controlled study. Measurements included plasma drug and cortisol concentrations, total lymphocyte counts, and whole blood lymphocyte proliferation (WBLP). Population data analysis was performed using a Monte Carlo-Parametric Expectation Maximization algorithm.

Results

The final indirect, multi-component, mechanism-based model well captured the circadian rhythm exhibited in cortisol production and suppression, lymphocyte trafficking, and WBLP temporal profiles. In contrast to PK parameters, variability of drug concentrations producing 50% maximal immunosuppression (IC50) were larger between subjects (73–118%). The individual log-transformed reciprocal posterior Bayesian estimates of IC50 for ex vivo WBLP were highly correlated with those determined in vitro for the four drugs (r 2 = 0.928).

Conclusions

The immunosuppressive dynamics of the four corticosteroids was well described by the population PK/PD model with the incorporation of inter-occasion variability for several model components. This study provides improvements in modeling systemic corticosteroid effects and demonstrates greater variability of system and dynamic parameters compared to pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Czock, F. Keller, F. M. Rasche, and U. Haussler. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin. Pharmacokinet. 44:61–98 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. R. Newton. Molecular mechanisms of glucocorticoid action: what is important? Thorax 55:603–613 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. E. Falkenstein, H. C. Tillmann, M. Christ, M. Feuring, and M. Wehling. Multiple actions of steroid hormones—a focus on rapid, nongenomic effects. Pharmacol. Rev. 52:513–556 (2000).

    PubMed  CAS  Google Scholar 

  4. J. A. Wald and W. J. Jusko. Prednisolone pharmacodynamics: leukocyte trafficking in the rat. Life Sci. 55:PL371–PL378 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. G. M. Ferron and W. J. Jusko. Species- and gender-related differences in cyclosporine /prednisolone/sirolimus interactions in whole blood lymphocyte proliferation assays. J. Pharmacol. Exper. Ther. 286:191–200 (1998).

    PubMed  CAS  Google Scholar 

  6. N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 21:457–478 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. D. E. Mager, S. X. Lin, R. A. Blum, C. D. Lates, and W. J. Jusko. Dose equivalency evaluation of major corticosteroids: pharmacokinetics and cell trafficking and cortisol dynamics. J. Clin. Pharmacol 43:1216–1227 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. M. O. Karlsson and L. B. Sheiner. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J. Pharmacokinet. Biopharm. 21:735–750 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. W. J. Jusko, N. A. Pyszczynski, M. S. Bushway, R. D’Ambrosio, and S. M. Mis. Fifteen years of operation of a high-performance liquid chromatographic assay for prednisolone, cortisol and prednisone in plasma. J. Chromatogr. B, Biomed. Sciences and Appl. 658:47–54 (1994).

    Article  CAS  Google Scholar 

  10. M. H. Magee, R. A. Blum, C. D. Lates, and W. J. Jusko. Pharmacokinetic/pharmacodynamic model for prednisolone inhibition of whole blood lymphocyte proliferation. Br. J. Clin. Pharmacol. 53:474–484 (2002).

    Article  PubMed  CAS  Google Scholar 

  11. W. Krzyzanski, A. Chakraborty, and W. J. Jusko. Algorithm for application of Fourier analysis for biorhythmic baselines of pharmacodynamic indirect response models. Chronobiol. Int. 17:77–93 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Milad, E. A. Ludwig, S. Anne, E. Middleton Jr, and W. J. Jusko. Pharmacodynamic model for joint exogenous and endogenous corticosteroid suppression of lymphocyte trafficking. J.Pharmacokinet.Biopharm. 22:469–480 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. J. G. Stark, S. Werner, S. Homrighausen, Y. Tang, M. Krieg, H. Derendorf, H. Moellmann, and G. Hochhaus. Pharmacokinetic/pharmacodynamic modeling of total lymphocytes and selected subtypes after oral budesonide. J. Pharmacokinet. Pharmacodyn. 33:441–459 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. R. J. Bauer and S. Guzy. Monte Carlo parametric expectation maximization (MCPEM) method for analyzing population pharmacokinetic/pharmacodynamic (PK/PD) data. In D. Z. D’Argenio (ed.), Advanced Methods of Pharmacokinetic and Pharmacodynamic System Analysis, vol. 3, Kluwer, Boston, MA 2004, pp. 135–163.

    Chapter  Google Scholar 

  15. H. Derendorf, H. Mollmann, J. Barth, C. Mollmann, S. Tunn, and M. Krieg. Pharmacokinetics and oral biovailability of hydrocortisone. J. Clin. Pharmacol. 31:473–476 (1991).

    PubMed  CAS  Google Scholar 

  16. H. Mollmann, S. Balbach, G. Hochhaus, J. Barth, and H. Derendorf. Pharmacokinetic–pharmacodynamic correlations of corticosteroids. In H. Derendorf and G. Hochhaus (eds.), Handbook of Pharmacokinetic/pharmacodynamic Correlation, CRC Press, Boca Raton, FL, 1995, pp. 323–361.

    Google Scholar 

  17. M. L. Rocci, R. D’Ambrosio, and W. J. Jusko. Prednisolone binding to albumin and transcortin in the presence of cortisol. Biochem. Pharmacol. 31:289–292 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. C. M. Ng, A. Joshi, R. L. Dedrick, M. R. Garovoy, and R. J. Bauer. Pharmacokinetic–pharmacodynamic-efficacy analysis of efalizumab in patients with moderate to severe psoriasis. Pharma. Res. 22:1088–1100 (2005).

    Article  CAS  Google Scholar 

  19. Y. Y. Hon, W. J. Jusko, V. E. Spratlin, and M. W. Jann. Altered methylprednisolone pharmacodynamics in healthy subjects with histamine N-methyltransferase C314T genetic polymorphism. J. Clin. Pharmacol. 46:408–417 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. M. A. Suni, V. C. Maino, and H. T. Maecker. Ex vivo analysis of T-cell function. Curr. Opin. Immunol. 17:434–440 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. D. T. Boumpas, G. P. Chrousos, R. L. Wilder, T. R. Cupps, and J. E. Balow. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann. Intern. Med. 119:1198–1208 (1993).

    PubMed  CAS  Google Scholar 

  22. C. Hartel, H. J. Hammers, P. Schlenke, L. Fricke, N. Schumacher, H. Kirchner, and M. Muller-Steinhardt. Individual variability in cyclosporin A sensitivity: the assessment of functional measures on CD28-mediated costimulation of human whole blood T lymphocytes. J. Interferon Cytokine Res. 23:91–99 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. G. Levy. Predicting effective drug concentrations for individual patients. Determinants of pharmacodynamic variability. Clin. Pharmacokinet. 34:323–333 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. A. A. Fasanmade and W. J. Jusko. Optimizing whole blood lymphocyte proliferation in the rat. J. Immunol. Methods 184:163–167 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. S. R. Wang and B. Zweiman. In vivo and in vitro effects of methylprednisolone on human lymphocyte proliferation. Immunopharmacology 2:95–101 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Robert J. Bauer (XOMA LLC, Berkeley, CA), Dr. Olanrewaju Okusanya, and Dr. Alan Forrest (Department of Pharmacy Practice, University at Buffalo, SUNY) for their assistance with S-ADAPT, Dr. Sheren X. Lin and Dr. Christian D. Lates for their clinical support of our previous study, and Ms. Nancy Pyszczynski and Ms. Suzette Mis for providing technical assistance. This research was supported, in part, by NIH Grants GM24211 and GM57980 (to WJJ), new investigator support from the University at Buffalo, SUNY (to DEM), and the University at Buffalo-Pfizer Strategic Alliance Fellowship (for YH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Mager.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11095_2006_9232_MOESM1_ESM.doc

11095_2006_9232_MOESM2_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Mager, D.E., Blum, R.A. et al. Population Pharmacokinetic/Pharmacodynamic Modeling of Systemic Corticosteroid Inhibition of Whole Blood Lymphocytes: Modeling Interoccasion Pharmacodynamic Variability. Pharm Res 24, 1088–1097 (2007). https://doi.org/10.1007/s11095-006-9232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9232-x

Key words

Navigation