Skip to main content
Log in

Rapid Assessment of Oxidation Behavior in Co-Based γ/γ′ Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A high-throughput, non-destructive photostimulated luminescence spectroscopy (PSLS) technique was used to analyze fifty oxidized Co-based γ/γ′ alloy samples for the presence of α-Al2O3. Alloys were produced by combinatorial ion-plasma deposition, and oxidation was performed at 1100 °C for 1 h in air. PSLS measurements are compared with microscopy of oxides in cross-section to relate the presence of the luminescence signal of α-Al2O3 with the thickness of the oxide scale. Analysis of the current dataset validates the use of PSLS as a rapid screening technique of oxidation behavior for the present materials system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The mechanisms of formation of these microstructures are fairly complex in the current 6-component alloy system. A detailed discussion will be presented in a separate publication on the results of the combinatorial oxidation studies. However, similar observations have been reported in Ni–Cr alloys [29] and Ni–Al alloys [30]. Briefly, it is posited that these morphologies arise as the system transitions from internal oxidation kinetics to external scale-forming behavior, followed by the lateral undercutting-growth of Al2O3 scale.

References

  1. R. C. Reed, The Superalloys, (Cambridge University Press, New York, 2006).

    Book  Google Scholar 

  2. H.-Y. Yan, V. A. Vorontsov and D. Dye, Corrosion Science 83, 382 (2014).

    Article  Google Scholar 

  3. M. S. Titus, A. Suzuki and T. M. Pollock, Superalloys 2012, 823 (2012).

    Article  Google Scholar 

  4. A. G. Evans, D. R. Clarke and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).

    Article  Google Scholar 

  5. D. R. Clarke, M. Oechsner and N. P. Padture, MRS Bulletin 37, 891 (2012).

    Article  Google Scholar 

  6. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Science 312, 90 (2006).

    Article  Google Scholar 

  7. T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu and A. Suzuki, JOM 62, 58 (2010).

    Article  Google Scholar 

  8. A. Suzuki, H. Inui and T. M. Pollock, Annual Review of Materials Research 45, 345 (2015).

    Article  Google Scholar 

  9. M. S. Titus, A. Suzuki and T. M. Pollock, Scripta Materialia 66, 574 (2012).

    Article  Google Scholar 

  10. F. Xue, H. J. Zhou, X. F. Ding, M. L. Wang and Q. Feng, Materials Letters 112, 215 (2013).

    Article  Google Scholar 

  11. F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  Google Scholar 

  12. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2008).

    Google Scholar 

  13. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  14. G. Wang, B. Gleeson and D. L. Douglass, Oxidation of Metals 35, 317 (1991).

    Article  Google Scholar 

  15. F. S. Pettit, Transactions of the Metallurgical Society of AIME 239, 1296 (1967).

    Google Scholar 

  16. M. P. Brady, I. G. Wright and B. Gleeson, JOM 52, 16 (2000).

    Article  Google Scholar 

  17. L. Klein, B. von Bartenwerffer, M. S. Killian, P. Schmuki and S. Virtanen, Corrosion Science 79, 29 (2014).

    Article  Google Scholar 

  18. L. Klein, Y. Shen, M. S. Killian and S. Virtanen, Corrosion Science 53, 2713 (2011).

    Article  Google Scholar 

  19. C. J. Metting, J. K. Bunn, E. Underwood, S. Smoak and J. Hattrick-Simpers, ACS Combinatorial Science 15, 419 (2013).

    Article  Google Scholar 

  20. R. R. Adharapurapu, J. Zhu, V. S. Dheeradhada, D. M. Lipkin and T. M. Pollock, Acta Materialia 77, 379 (2014).

    Article  Google Scholar 

  21. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 59 (2000).

    Article  Google Scholar 

  22. L. Qiu, F. Yang, W. Zhang, X. Zhao and P. Xiao, Corrosion Science 89, 13 (2014).

    Article  Google Scholar 

  23. R. J. Christensen, D. M. Lipkin, D. R. Clarke and K. Murphy, Applied Physics Letters 69, 3754 (1996).

    Article  Google Scholar 

  24. C. A. Stewart, R. K. Rhein, A. Suzuki, T. M. Pollock, C. G. Levi. Oxide scale formation in novel γ–γ’ cobalt-based alloys, in Proceedings of the 13th International Symposium on Superalloys, eds. M. Hardy, E. Huron, and U. Glatzel, et al. TMS (The Minerals, Metals & Materials Society, 2016), p. 991.

  25. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  Google Scholar 

  26. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 671 (2012).

    Article  Google Scholar 

  27. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos and M. Pärs, Journal of Physics: Conference Series 93, 012039 (2007).

    Google Scholar 

  28. E. A. G. Shillington and D. R. Clarke, Acta Materialia 47, 1297 (1999).

    Article  Google Scholar 

  29. F. H. Stott, P. K. N. Bartlett and G. C. Wood, Oxidation of Metals 27, 37 (1987).

    Article  Google Scholar 

  30. H. M. Hindam and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1622 (1980).

    Article  Google Scholar 

  31. Q. Wen, D. M. Lipkin and D. R. Clarke, Journal of the American Ceramic Society 81, 3345 (1998).

    Article  Google Scholar 

  32. K. Kawagishi, A.-C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, H. Harada, Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. Paper Present Superalloys Seven Springs Mt. Resort Champion PA, USA (2012), p. 9.

  33. H. Yu and D. R. Clarke, Journal of the American Ceramic Society 85, 1966 (2002).

    Article  Google Scholar 

  34. R. Newman and R. M. Chrenko, Physical Review 114, 1507 (1959).

    Article  Google Scholar 

  35. G. W. Pratt Jr. and R. Coelho, Physical Review 116, 281 (1959).

    Article  Google Scholar 

  36. F. Di Quarto, C. Sunseri, S. Piazza and M. C. Romano, The Journal of Physical Chemistry B 101, 2519 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was sponsored by the National Science Foundation under DMREF Grant DMR 1534264. The authors are grateful to GE Global Research, especially Dr. Don M. Lipkin and Messrs. Scott Weaver and Vince Tur for providing technical guidance and for performing the IPD synthesis of the combinatorial libraries. The technical assistance of Dr. Stephan Krämer and Messrs. Mark Cornish, Deryck Stave, and Chris Torbet is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, C.A., Suzuki, A., Pollock, T.M. et al. Rapid Assessment of Oxidation Behavior in Co-Based γ/γ′ Alloys. Oxid Met 90, 485–498 (2018). https://doi.org/10.1007/s11085-018-9849-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-018-9849-2

Keywords

Navigation