Skip to main content
Log in

Integrating liquid crystal based optical devices in photonic crystal fibers

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Liquid crystal photonic bandgap fibers form a versatile and robust platform for designing optical fiber devices, which are highly tunable and exhibit novel optical properties for manipulation of guided light. We present fiber devices for spectral filtering and polarization control/analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkeskjold T.T. and Bjarklev A. (2007). Electrically controlled liquid crystal photonic bandgap fiber polarimeter. Opt. Lett. 32(12): 1707–1709

    Article  ADS  Google Scholar 

  • Alkeskjold T.T., Lægsgaard J., Bjarklev A., Hermann D., Anawati A., Broeng J., Li J. and Wu S.T. (2004). All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Opt. Express 12: 5857–5871

    Article  ADS  Google Scholar 

  • Alkeskjold T.T., Lægsgaard J., Hermann D., Broeng J., Li J., Gauza S., Wu S.T. and Bjarklev A. (2006). Highly tunable large-core liquid crystal photonic bandgap fiber. Appl. Opt. 45: 2261–2264

    Article  ADS  Google Scholar 

  • Bise, R.T., Windeler, R.S., Kranz, K.S., Kerbage, C., Eggleton, B.J., Trevor, D.J., et al.: Tunable photonic band gap fiber. Optical fiber communication conference technical digest, pp. 466–468 (2002)

  • Du F., Lu Y.Q. and Wu S.-T. (2004). Electrically tunable liquid-crystal photonic crystal fiber. Appl. Phys. Lett. 85: 2181–2183

    Article  ADS  Google Scholar 

  • Eggleton B.J., Kerbage C., Westbrook P.S., Windeler R. and Hale A. (2001). Microstructured optical fiber devices. Opt. Express 9: 698–713

    Article  ADS  Google Scholar 

  • Fuerbach A., Steinvurzel P., Bolger J. and Eggleton B.J. (2005). Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers. Opt. Express 13: 2977–2987

    Article  ADS  Google Scholar 

  • Haakestad M.W., Alkeskjold T.T., Nielsen M.D., Scolari L., Riishede J., Engan H.E. and Bjarklev A. (2005). Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photon. Technol. Lett. 17: 819–821

    Article  ADS  Google Scholar 

  • Kerbage C., Windeler R.S., Eggleton B.J., Mach P., Dolinski M. and Rogers J.A. (2002). Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber. Opt. Commun. 204: 179–184

    Article  ADS  Google Scholar 

  • Knight J.C., Broeng J., Birks T.A. and Russell P.St.J. (1998). Photonic bandgap guidance in optical fibers. Science 283: 1476–1478

    Article  Google Scholar 

  • Lægsgaard J. (2004). Gap formation and guided modes in photonic bandgap fibres with high-index rods. J. Opt. A Pure Appl. Opt. 6: 798–804

    Article  ADS  Google Scholar 

  • Lægsgaard J. and Alkeskjold T.T. (2006). Designing a photonic bandgap fiber for thermo-optic switching. J. Opt. Soc. Am. B 23: 951–957

    Article  ADS  Google Scholar 

  • Larsen T.T., Bjarklev A., Hermann D.S. and Broeng J. (2003). Optical devices based on liquid crystal photonic bandgap fibres. Opt. Express 11: 2589–2596

    Article  ADS  Google Scholar 

  • Lesiak P., Wolinski T.R., Brzdakiewicz K., Nowecka K., Ertman S., Karpierz M., Domanski A.W. and Dabrowski R. (2007). Temperature tuning of polarization mode dispersion mode dispersion in single-core and two-core photonic liquid crystal fibers. Opto-Electron. Rev. 15: 27–31

    Article  ADS  Google Scholar 

  • Li J., Gauza S. and Wu S.-T. (2004). High temperature-gradient refractive index liquid crystals. Opt. Express 12: 2002–2010

    Article  ADS  Google Scholar 

  • Litchinitser N.M., Dunn S.C., Steinvurzel P.E., Eggleton B.J., White T.P., McPhedran R.C. and de Sterke C.M. (2004). Application of an ARROW model for designing tunable photonic devices. Opt. Express 12: 1540–1550

    Article  ADS  Google Scholar 

  • Noordegraaf D., Scolari L., Lægsgaard J., Rindorf L. and Alkeskjold T.T. (2007). Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Opt. Express 15: 7901–7912

    Article  ADS  Google Scholar 

  • Russell P.St.J. (2003). Photonic crystal fibers. Science 299: 358–362

    Article  ADS  Google Scholar 

  • Scolari L., Alkeskjold T.T., Riishede J., Bjarklev A., Hermann D., Anawati A., Nielsen M. and Bassi P. (2005). Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Opt. Express 13: 7483–7496

    Article  ADS  Google Scholar 

  • Steinvurzel P., Moore E.D., Mägi E.C., Kuhlmey B.T. and Eggleton B.J. (2006). Long period grating resonances in photonic bandgap fiber. Opt. Express 14: 3007–3014

    Article  ADS  Google Scholar 

  • Tartarini G., Pansera M., Alkeskjold T.T., Bjarklev A. and Bassi P. (2007). Polarization properties of elliptical hole liquid crystal photonic bandgap fibres. IEEE J. Lightw. Tech. 25: 2522–2530

    Article  ADS  Google Scholar 

  • Yeom D.-I., Steinvurzel P., Eggleton B.J., Lim S.D. and Kim B.Y. (2007). Tunable acoustic gratings in solid-core photonic bandgap fiber. Opt. Express 15: 3513–3518

    Article  ADS  Google Scholar 

  • Zografopoulos D.C., Kriezis E.E. and Tsiboukis T.D. (2006). Tunable highly birefringent bandgap-guiding liquid crystal microstructured fibers. J. Lightwave Tech. 24: 3427–3432

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tanggaard Alkeskjold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkeskjold, T.T., Scolari, L., Noordegraaf, D. et al. Integrating liquid crystal based optical devices in photonic crystal fibers. Opt Quant Electron 39, 1009–1019 (2007). https://doi.org/10.1007/s11082-007-9139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-007-9139-8

Keywords

Navigation