Skip to main content
Log in

Distributed robust optimization (DRO), part I: framework and example

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Robustness of optimization models for network problems in communication networks has been an under-explored topic. Most existing algorithms for solving robust optimization problems are centralized, thus not suitable for networking problems that demand distributed solutions. This paper represents a first step towards a systematic theory for designing distributed and robust optimization models and algorithms. We first discuss several models for describing parameter uncertainty sets that can lead to decomposable problem structures and thus distributed solutions. These models include ellipsoid, polyhedron, and D-norm uncertainty sets. We then apply these models in solving a robust rate control problem in wireline networks. Three-way tradeoffs among performance, robustness, and distributiveness are illustrated both analytically and through simulations. In Part II of this two-part paper, we will present applications to wireless power control using the framework of distributed robust optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bambos N, Chen SC, Pottie GJ (2000) Channel access algorithms with active link protection for wireless communication networks with power control. IEEE/ACM Trans Netw 8(5):583–597

    Article  Google Scholar 

  • Ben-Tal ANA (2001) On polyhedral approximations of the second-order cone. Math Oper Res 26(2):193–205

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (1995) Robust solutions to uncertain linear problems. Research report 6/95, Optimization Laboratory, Faculty of Industrial Engineering and Management, Technion, Tech. Rep

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769–805

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (1999) Robust solutions to uncertain programs. Oper Res Lett 25:1–13

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (2007) Selected topics in robust convex optimization. Math Program 1(1):125–158

    Article  MathSciNet  Google Scholar 

  • Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: numerical methods. Prentice Hall, Englewood

    MATH  Google Scholar 

  • Bertsimas D, Tsitsiklis JN (1997) Linear optimization, 1st edn. Athena Scientific, Belmont

    Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Cai DWH, Tan CW, Low SH (2012) Optimal max-min fairness rate control in wireless networks: Perron-Frobenius characterization and algorithms. In: Proc IEEE INFOCOM

    Google Scholar 

  • Chiang M, Hande P, Lan T, Tan CW (2008) Power control in wireless cellular networks. Found Trends Netw 2:381–533

    Article  Google Scholar 

  • Dimitris B, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  MATH  MathSciNet  Google Scholar 

  • El-Ghaoui L, Lebret H (1997) Robust solutions to least-square problems to uncertain data matrices. SIAM J Matrix Anal Appl 18:1035–1064

    Article  MATH  MathSciNet  Google Scholar 

  • El-Ghaoui L, Oustry F, Lebret H (1998) Robust solutions to uncertain semidefinite programs. SIAM J Optim 9:33–52

    Article  MATH  MathSciNet  Google Scholar 

  • Foschini G, Miljanic Z (1993) A simple distributed autonomous power control algorithm and its convergence. IEEE Trans Veh Technol 42(4):641–646

    Article  Google Scholar 

  • Giaquinta M, Hildebrandt S (1996) Calculus of variations, 1st edn. Springer, New York

    Google Scholar 

  • Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 58(301):13–30

    Article  MATH  MathSciNet  Google Scholar 

  • Kelly F, Maulloo A, Tan D (1998) Rate control for communication networks: shadow prices, proportional fairness and stability. J Oper Res Soc 49(3):237–252

    MATH  Google Scholar 

  • Lee JW, Chiang M, Calderbank AR (2007) Utility-optimal random-access control. IEEE Trans Wirel Commun 6(7):2741–2751

    Article  Google Scholar 

  • Leyffer S (2005) The return of the active set method. Oberwolfach Rep 2(1):107–109

    Google Scholar 

  • Low SH (2003) A duality model of TCP and queue management algorithms. IEEE/ACM Trans Netw 11(4):525–536

    Article  MathSciNet  Google Scholar 

  • Low SH, Lapsley DE (1999) Optimization flow control, I: basic algorithm and convergence. IEEE/ACM Trans Netw 7(6):861–875

    Article  Google Scholar 

  • Nemirovski A (2003) On tractable approximations of randomly perturbed convex constraints. In: Proceedings of the 42nd IEEE conference on decision and control, pp 2419–2422

    Google Scholar 

  • Parsaeefard S, Sharafat A, Rasti M (2010) Robust probabilistic distributed power allocation by chance constraint approach. In: Proc IEEE PIMRC

    Google Scholar 

  • Tan CW, Palomar DP, Chiang M (2007) Exploiting hidden convexity for flexible and robust resource allocation in cellular networks. In: Proc IEEE INFOCOM

    Google Scholar 

  • Tan CW, Palomar DP, Chiang M (2009) Energy-robustness tradeoff in cellular network power control. IEEE/ACM Trans Netw 17:912–925

    Article  Google Scholar 

  • Xu D, Li Y, Chiang M, Calderbank AR (2007) Optimal provision of elastic service availability. In: Proc IEEE INFOCOM

    Google Scholar 

  • Yang K, Wang X (2008) Cross-layer network planning for multi-radio cognitive wireless networks. IEEE Trans Commun 7(11):1363–1373

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, K., Huang, J., Wu, Y. et al. Distributed robust optimization (DRO), part I: framework and example. Optim Eng 15, 35–67 (2014). https://doi.org/10.1007/s11081-012-9198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-012-9198-y

Keywords

Navigation