Skip to main content
Log in

Complete dynamical analysis of a neocortical network model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The brain is a complex system consisting of a large number of interacting neurons. Recently, a simple nonlinear biological model has been proposed for the up and down state transitions in the network of excitatory and inhibitory neurons. In this paper, we study the dynamical behavior of this model by calculating the Lyapunov exponents and bifurcation diagrams for various values of synaptic connections. We show that varying the synaptic strength values has a considerable effect on the bifurcations in the model. Furthermore, we show that the model can exhibit chaotic firing for certain values of the excitatory–excitatory synaptic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  2. Hickok, G.: The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition. WW Norton & Company, New York (2014)

    Google Scholar 

  3. Takagi, H.: Roles of ion channels in EPSP integration at neuronal dendrites. Neurosci. Res. 37(3), 167–171 (2000)

    Article  Google Scholar 

  4. Coombs, J., Eccles, J.C., Fatt, P.: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. 130(2), 326–373 (1955)

    Article  Google Scholar 

  5. Ma, J., Yang, Z.-Q., Yang, L.-J., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ A. Sci. 20(9), 639–659 (2019)

    Article  Google Scholar 

  6. Hashemi, N.S., Dehnavi, F., Moghimi, S., Ghorbani, M.: Slow spindles are associated with cortical high frequency activity. NeuroImage 189, 71–84 (2019)

    Article  Google Scholar 

  7. Ghorbani, M., Mehta, M., Bruinsma, R., Levine, A.J.: Nonlinear-dynamics theory of up-down transitions in neocortical neural networks. Phys. Rev. E 85(2), 021908 (2012)

    Article  Google Scholar 

  8. Song, X., Wang, C., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58(6), 1007–1014 (2015)

    Article  Google Scholar 

  9. Koch, C., Segev, I., et al.: Methods in Neuronal Modeling: From Ions to Networks. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  11. Nossenson, N., Messer, H.: Optimal sequential detection of stimuli from multiunit recordings taken in densely populated brain regions. Neural Comput. 24(4), 895–938 (2012)

    Article  MATH  Google Scholar 

  12. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445 (1961)

    Article  Google Scholar 

  13. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  14. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Philos. Trans. R. Soc. Lond. Ser. B 221(1222), 87–102 (1984)

    Google Scholar 

  15. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35(1), 193–213 (1981)

    Article  Google Scholar 

  16. Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., Brunel, N.: How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23(37), 11628–11640 (2003)

    Article  Google Scholar 

  17. Panahi, S., Rostami, Z., Rajagopal, K., Namazi, H., Jafari, S.: Complete dynamical analysis of myocardial cell exposed to magnetic flux. Chin. J. Phys. 64, 363–373 (2020)

    Article  MathSciNet  Google Scholar 

  18. Parastesh, F., Rajagopal, K., Karthikeyan, A., Alsaedi, A., Hayat, T., Pham, V.-T.: Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation. Cog. Neurodyn. 12(6), 607–614 (2018)

    Article  Google Scholar 

  19. Majhi, S., Ghosh, D.: Alternating chimeras in networks of ephaptically coupled bursting neurons. Chaos 28(8), 083113 (2018)

    Article  MathSciNet  Google Scholar 

  20. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  21. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)

    Article  Google Scholar 

  22. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  23. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Xu, Y., Ma, J., Zhan, X., Jia, Y.: Temperature effect on memristive ion channels. Cognit. Neurodyn. 13(6), 601–611 (2019)

    Article  Google Scholar 

  25. Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., Repnik, R.: Synchronizability of two neurons with switching in the coupling. Appl. Math. Comput. 350, 217–223 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  Google Scholar 

  27. Sun, X., Perc, M., Kurths, J.: Effects of partial time delays on phase synchronization in Watts–Strogatz small-world neuronal networks. Chaos 27(5), 053113 (2017)

    Article  MathSciNet  Google Scholar 

  28. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27(7), 073109 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kundu, S., Majhi, S., Ghosh, D.: Chemical synaptic multiplexing enhances rhythmicity in neuronal networks. Nonlinear Dyn. 98(3), 1659–1668 (2019)

    Article  Google Scholar 

  30. Vaidyanathan, S.: Adaptive control of the Fitzhugh–Nagumo chaotic neuron model. Int. J. Pharm. Technol. Res. 8(6), 117–127 (2015)

    Google Scholar 

  31. Lakshmanan, S., Lim, C.P., Nahavandi, S., Prakash, M., Balasubramaniam, P.: Dynamical analysis of the Hindmarsh–Rose neuron with time delays. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1953–1958 (2016)

    Article  MathSciNet  Google Scholar 

  32. Panahi, S., Jafari, S., Khalaf, A.J.M., Rajagopal, K., Pham, V.-T., Alsaadi, F.E.: Complete dynamical analysis of a neuron under magnetic flow effect. Chin. J. Phys. 56(5), 2254–2264 (2018)

    Article  Google Scholar 

  33. Middleton, J., Chacron, M., Lindner, B., Longtin, A.: Firing statistics of a neuron model driven by long-range correlated noise. Phys. Rev. E 68(2), 021920 (2003)

    Article  Google Scholar 

  34. Channell, P., Fuwape, I., Neiman, A.B., Shilnikov, A.L.: Variability of bursting patterns in a neuron model in the presence of noise. J. Comput. Neurosci. 27(3), 527 (2009)

    Article  MathSciNet  Google Scholar 

  35. Kang, Q., Huang, B., Zhou, M.: Dynamic behavior of artificial Hodgkin–Huxley neuron model subject to additive noise. IEEE Trans. Cybern. 46(9), 2083–2093 (2015)

    Article  Google Scholar 

  36. Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16(7), 2397–2410 (1996)

    Article  Google Scholar 

  37. Marshall, L., Helgadóttir, H., Mölle, M., Born, J.: Boosting slow oscillations during sleep potentiates memory. Nature 444(7119), 610–613 (2006)

    Article  Google Scholar 

  38. Wolansky, T., Clement, E.A., Peters, S.R., Palczak, M.A., Dickson, C.T.: Hippocampal slow oscillation: a novel eeg state and its coordination with ongoing neocortical activity. J. Neurosci. 26(23), 6213–6229 (2006)

    Article  Google Scholar 

  39. Mehta, M.R.: Cortico–Hippocampal interaction during up-down states and memory consolidation. Nat. Neurosci. 10(1), 13–15 (2007)

    Article  MathSciNet  Google Scholar 

  40. Stickgold, R.: Sleep-dependent memory consolidation. Nature 437(7063), 1272–1278 (2005)

    Article  Google Scholar 

  41. Sanchez-Vives, M.V., Mattia, M., Compte, A., Perez-Zabalza, M., Winograd, M., Descalzo, V.F., Reig, R.: Inhibitory modulation of cortical up states. J. Neurophysiol. 104(3), 1314–1324 (2010)

    Article  Google Scholar 

  42. Tokdar, S., Xi, P., Kelly, R.C., Kass, R.E.: Detection of bursts in extracellular spike trains using hidden semi-Markov point process models. J. Comput. Neurosci. 29(1–2), 203–212 (2010)

    Article  Google Scholar 

  43. Ji, D., Wilson, M.A.: Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10(1), 100–107 (2007)

    Article  Google Scholar 

  44. Babloyantz, A., Salazar, J., Nicolis, C.: Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys. Lett. A 111(3), 152–156 (1985)

    Article  Google Scholar 

  45. Hirata, Y., Oku, M., Aihara, K.: Chaos in neurons and its application: perspective of chaos engineering. Chaos Interdiscip. J. Nonlinear Sci. 22(4), 047511 (2012)

    Article  MathSciNet  Google Scholar 

  46. Rasmussen, R., Jensen, M.H., Heltberg, M.L.: Chaotic dynamics mediate brain state transitions, driven by changes in extracellular ion concentrations. Cell Syst. 5(6), 591–603 (2017)

    Article  Google Scholar 

  47. Shi, W., Shang, P., Ma, Y., Sun, S., Yeh, C.-H.: A comparison study on stages of sleep: quantifying multiscale complexity using higher moments on coarse-graining. Commun. Nonlinear Sci. Numer. Simul. 44, 292–303 (2017)

    Article  MathSciNet  Google Scholar 

  48. Dahal, P., Avagyan, M., Skardal, P.S., Blaise, H.J., Ning, T.: Characterizing chaotic behavior of REM sleep EEG using lyapunov exponent. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, pp. 1–6. IEEE (2017)

  49. Diekelmann, S., Born, J.: The memory function of sleep. Nat. Rev. Neurosci. 11(2), 114–126 (2010)

    Article  Google Scholar 

  50. Rasch, B., Born, J.: About sleep’s role in memory. Physiol. Rev. 93(2), 681–766 (2013)

    Article  Google Scholar 

  51. Fuhrmann, G., Markram, H., Tsodyks, M.: Spike frequency adaptation and neocortical rhythms. J. Neurophys. 88(2), 761–770 (2002)

    Article  Google Scholar 

  52. Boeing, G.: Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction. Systems 4(4), 37 (2016)

    Article  Google Scholar 

  53. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

Matjaž Perc was supported by the Slovenian Research Agency (Grant Nos. J4-9302, J1-9112, and P1-0403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Perc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroutannia, A., Ghasemi, M., Parastesh, F. et al. Complete dynamical analysis of a neocortical network model. Nonlinear Dyn 100, 2699–2714 (2020). https://doi.org/10.1007/s11071-020-05668-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05668-6

Keywords

Navigation