Skip to main content
Log in

Tuning linear and nonlinear characteristics of a resonator via nonlinear interaction with a secondary resonator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We conside the dynamics of a nonlinear resonator that is nonlinearly coupled to a linear resonator that has a relatively short decay time. In this case, the secondary (linear) resonator adiabatically tracks the primary (nonlinear) resonator. This model, which is motivated by ongoing experimental work in nano-resonators, is analyzed analytically and numerically to show that the linear and nonlinear characteristics of the primary resonator can be altered in a significant manner by the coupling to the secondary resonator. Such an arrangement may provide a practical means of tuning resonator characteristics in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Torteman, B., Kessler, Y., Liberzon, A., Krylov, S.: Micro-beam resonator parametrically excited by electro-thermal Joule’s heating and its use as a flow sensor. Nonlinear Dyn. 1–15 (2019). https://doi.org/10.1007/s11071-019-05031-4

    Google Scholar 

  2. Krakover, N., Maimon, R., Tepper-Faran, T., Gerson, Y., Rand, R., Krylov, S.: Mechanical superheterodyne and its use for low frequency vibrations sensing. J. Microelectromech. Syst. 28(3), 362 (2019)

    Google Scholar 

  3. Pelliccia, L., Cacciamani, F., Farinelli, P., Sorrentino, R.: High-\(Q\) tunable waveguide filters using ohmic RF MEMS switches. IEEE Trans. Microw. Theory Tech. 63(10), 3381 (2015)

    Google Scholar 

  4. Kostsov, E., Sokolov, A.: Gigahertz MEMS clock generator. Optoelectron. Instrum. Data Process. 55(2), 154 (2019)

    Google Scholar 

  5. Rebeiz, G.M., Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microw. Mag. 2(4), 59 (2001)

    Google Scholar 

  6. Rebeiz, G.M.: RF MEMS: theory, design, and technology. Wiley, New York (2004)

    Google Scholar 

  7. Nguyen, C.T.C.: MEMS technology for timing and frequency control. In: Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005.(IEEE, 2005), p. 11

  8. Van Beek, J., Puers, R.: A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22(1), 013001 (2011)

    Google Scholar 

  9. Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001 (2010)

    Google Scholar 

  10. Cho, H., Jeong, B., Yu, M.F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. Int. J. Solids Struct. 49(15–16), 2059 (2012)

    Google Scholar 

  11. Ruzziconi, L., Younis, M.I., Lenci, S.: An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. J. Comput. Nonlinear Dyn. 8(1), 011014 (2013)

    MATH  Google Scholar 

  12. Zeng, J., Garg, A., Kovacs, A., Bajaj, A.K., Peroulis, D.: An equation-based nonlinear model for non-flat MEMS fixed-fixed beams with non-vertical anchoring supports. J. Micromech. Microeng. 25(5), 055018 (2015)

    Google Scholar 

  13. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12(6), 759 (2002)

    Google Scholar 

  14. Younis, M.I., Nayfeh, A.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91 (2003)

    MATH  Google Scholar 

  15. Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1 (2008)

    MATH  Google Scholar 

  16. Dykman, M., Krivoglaz, M.: Spectral distribution of nonlinear oscillators with nonlinear friction due to a medium. Phys. Status Solidi (b) 68(1), 111 (1975)

    Google Scholar 

  17. Zaitsev, S., Shtempluck, O., Buks, E., Gottlieb, O.: Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 67(1), 859 (2012)

    MATH  Google Scholar 

  18. Amabili, M.: Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. Nonlinear Dyn. 93(1), 5–18 (2018)

    MathSciNet  Google Scholar 

  19. Dykman, M., Krivoglaz, M.: Theory of nonlinear oscillator interacting with a medium. Sov. Phys. Rev. 5, 265 (1984)

    Google Scholar 

  20. Levantino, S., Samori, C., Zanchi, A., Lacaita, A.L.: AM-to-PM conversion in varactor-tuned oscillators. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 49(7), 509 (2002)

    Google Scholar 

  21. Eichler, A., Moser, J., Chaste, J., Zdrojek, M., Wilson-Rae, I., Bachtold, A.: Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6(6), 339 (2011)

    Google Scholar 

  22. DeMartini, B.E., Rhoads, J.F., Turner, K.L., Shaw, S.W., Moehlis, J.: Linear and nonlinear tuning of parametrically excited MEMS oscillators. J. Microelectromech. Syst. 16(2), 310 (2007)

    Google Scholar 

  23. Saghafi, M., Dankowicz, H., Lacarbonara, W.: Nonlinear tuning of microresonators for dynamic range enhancement. Proc. R. Soc. A 471(2179), 20140969 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Shaw, S.W., Turner, K.L.: Tailoring the nonlinear response of MEMS resonators using shape optimization. Appl. Phys. Lett. 110(8), 081902 (2017)

    Google Scholar 

  25. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Google Scholar 

  26. Güttinger, J., Noury, A., Weber, P., Eriksson, A.M., Lagoin, C., Moser, J., Eichler, C., Wallraff, A., Isacsson, A., Bachtold, A.: Energy-dependent path of dissipation in nanomechanical resonators. Nat. Nanotechnol. 12(7), 631 (2017)

    Google Scholar 

  27. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8, 15523 (2017)

    Google Scholar 

  28. Shoshani, O., Shaw, S.W., Dykman, M.I.: Anomalous decay of nanomechanical modes going through nonlinear resonance. Sci. Rep. 7(1), 18091 (2017)

    Google Scholar 

  29. Einstein, A., Hopf, L.: Statistical investigation of a resonator’s motion in a radiation field. Ann. Phys. 33, 1105 (1910)

    MATH  Google Scholar 

  30. Bogolyubov, N.: On some statistical methods in mathematical physics. Izdat. Akad. Nauk Ukr. SSR Kiev 1, 115–137 (1945)

    Google Scholar 

  31. Atalaya, J., Kenny, T.W., Roukes, M., Dykman, M.: Nonlinear damping and dephasing in nanomechanical systems. Phys. Rev. B 94(19), 195440 (2016)

    Google Scholar 

  32. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Phys. A: Stat. Mech. Its Appl. 121(3), 587 (1983)

    MathSciNet  MATH  Google Scholar 

  33. Matheny, M., Villanueva, L., Karabalin, R., Sader, J.E., Roukes, M.: Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13(4), 1622 (2013)

    Google Scholar 

  34. Zhang, M., Wiederhecker, G.S., Manipatruni, S., Barnard, A., McEuen, P., Lipson, M.: Synchronization of micromechanical oscillators using light. Phys. Rev. Lett. 109(23), 233906 (2012)

    Google Scholar 

  35. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  36. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer, Berlin (2013)

    MATH  Google Scholar 

  37. Dirac, P.A.M.: The Principles of Quantum Mechanics, vol. 27. Oxford University Press, Oxford (1981)

    Google Scholar 

  38. Novotny, L.: Strong coupling, energy splitting, and level crossings: a classical perspective. Am. J. Phys. 78(11), 1199 (2010)

    Google Scholar 

  39. Pardo, M., Sorenson, L., Ayazi, F.: An empirical phase-noise model for MEMS oscillators operating in nonlinear regime. IEEE Trans. Circuits Syst. I: Regul. Pap. 59(5), 979 (2012)

    MathSciNet  Google Scholar 

  40. Agrawal, D.K., Seshia, A.A.: An analytical formulation for phase noise in MEMS oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(12), 1938 (2014)

    Google Scholar 

  41. Pankratz, E., Sánchez-Sinencio, E.: Survey of integrated-circuit-oscillator phase-noise analysis. Int. J. Circuit Theory and Appl. 42(9), 871 (2014)

    Google Scholar 

  42. Sobreviela, G., Vidal-Álvarez, G., Riverola, M., Uranga, A., Torres, F., Barniol, N.: Suppression of the Af-mediated noise at the top bifurcation point in a MEMS resonator with both hardening and softening hysteretic cycles. Sens. Actuators A: Phys. 256, 59 (2017)

    Google Scholar 

  43. Dykman, M., Krivoglaz, M.: Classical theory of nonlinear oscillators interacting with a medium. Phys. Status Solidi (b) 48(2), 497 (1971)

    Google Scholar 

  44. Habib, S., Kandrup, H.E.: Nonlinear noise in cosmology. Phys. Rev. D 46(12), 5303 (1992)

    MathSciNet  Google Scholar 

  45. Millonas, M.M.: Self-consistent microscopic theory of fluctuation-induced transport. Phys. Rev. Lett. 74(1), 10 (1995)

    Google Scholar 

  46. Hänggi, P.: Generalized Langevin equations: a useful tool for the perplexed modeller of nonequilibrium fluctuations? In: Schimansky-Geier, L., Pöschel, T. (eds.) Stochastic Dynamics, pp. 15–22. Springer, Berlin (1997)

Download references

Funding

SWS acknowledges partial support from the National Science Foundation (Grants Nos. CMMI 1561829 and CMMI 1662619). MID acknowledges partial support from the National Science Foundation (Grants Nos. CMMI 1661618 and DMR 1806473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriel Shoshani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Brief discerption of the microscopic theory of a resonator that interacts with a medium

Appendix A: Brief discerption of the microscopic theory of a resonator that interacts with a medium

We consider the total Hamiltonian of a nonlinear resonator with a potential U(x) that is coupled to a medium of harmonic oscillators. The analysis is well-known [16, 19, 31, 32, 43,44,45,46]; here, we briefly outline it for completeness. The total Hamiltonian includes the resonator Hamiltonian \(\mathcal {H}_r\), the medium Hamiltonian \(\mathcal {H}_m\), and the interaction Hamiltonian \(\mathcal {H}_\mathrm{inter}\) and reads

$$\begin{aligned} \mathcal {H}=\frac{v^2}{2}+U(x)+\frac{1}{2}\sum _k(p_k^2+\omega _k^2q_k^2)-G(x)\sum _k\epsilon _kq_k. \end{aligned}$$
(25)

The equations of motion resulting from Eq. (25) are

$$\begin{aligned} \ddot{x}&=-U'(x)+G'(x)\sum _k\epsilon _kq_k, \end{aligned}$$
(26)
$$\begin{aligned} \ddot{q}_k&=-\omega _k^2q_k+\epsilon _kG(x). \end{aligned}$$
(27)

We formally solve Eq. (27) in terms of its Green’s function, i.e.,

$$\begin{aligned} q_k(t)&=q_k(0)\cos (\omega _{k}t)+\frac{p_k(0)}{\omega _{k}}\sin (\omega _{k}t) \nonumber \\&+\frac{\epsilon _k}{\omega _{k}}\int _0^tG(x(\tau ))\sin (\omega _{k}(t-\tau ))\mathrm{d}\tau . \end{aligned}$$
(28)

Upon inserting Eq. (28) into Eq. (26), we find that

$$\begin{aligned} \ddot{x}=-U'(x)+G'(x)(L[x]+F), \end{aligned}$$
(29)

where

$$\begin{aligned} L[x]=&\sum _k\frac{\epsilon _k^{2}}{\omega _{k}}\int _0^tG(x(\tau ))\sin (\omega _{k}(t-\tau ))\mathrm{d}\tau , \end{aligned}$$
(30)
$$\begin{aligned} F(t)=&\sum _k\epsilon _k\left[ q_k(0)\cos (\omega _{k}t)+\frac{p_k(0)}{\omega _{k}}\sin (\omega _{k}t)\right] . \end{aligned}$$
(31)

Using integration by parts, we can rewrite Eq. (30) as

$$\begin{aligned} L[x]=&-G(x(t))\sum _k\frac{\epsilon _k^{2}}{\omega _{k}^2}+G(x(0))\sum _k\frac{\epsilon _k^{2}}{\omega _{k}^2}\cos (\omega _{k}t)\nonumber \\&-\sum _k\frac{\epsilon _k^{2}}{\omega _{k}^2}\int _0^t\dot{x}(\tau )G'(x(\tau ))\cos (\omega _{k}(t-\tau ))\mathrm{d}\tau . \end{aligned}$$
(32)

We assume that the medium contains an infinite number of harmonic oscillators with a continuous spectrum. Consequently, we approximate the sum over k as an integral. Toward this end, we define the spectral density of the bath as \(g(\omega )\mathrm{d}\omega =\sum _{\omega<\omega _k<\omega +\mathrm{d}\omega }\epsilon _k^{2}/\omega _{k}^2\).

Using Eq. (32) along with the assumption of a continuous spectrum of the medium, we rewrite Eq. (29) as

$$\begin{aligned}&\ddot{x}+G'(x)\int _0^t\varGamma (t-\tau )\dot{x}(\tau )G'(x(\tau ))\mathrm{d}\tau \nonumber \\&\quad +V_\mathrm{ren}'(x)=G'(x)\tilde{F}, \end{aligned}$$
(33)

where \(\varGamma (t-\tau )=\int _{-\infty }^{\infty }g(\omega )\cos (\omega (t-\tau ))\mathrm{d}\omega \) is the memory of the friction, \(V_\mathrm{ren}(x)=U(x)+\frac{1}{2}G^2(x)\int _{-\infty }^{\infty }g(\omega )\mathrm{d}\omega \) is the renormalized potential of the resonator, and \(\tilde{F}=F+G(x(0))\int _{-\infty }^{\infty }g(\omega )\cos (\omega t)\mathrm{d}\omega \) is a noise term.

The statistical properties of the noise term F are determined as follows: We assume that at \(t=0\), the interaction between the bath and the resonator is turned on and considers an ensemble of initial states in which x(0) is held fixed but the initial bath variables \(q_k(0),p_k(0)\) are drawn at random from a canonical distribution characterized by a temperature T, i.e.,

$$\begin{aligned} \mathcal {P}(\{q_k,p_k\}|x(0)=x)\propto \mathrm{e}^{-\mathcal {H}_m/k_BT}. \end{aligned}$$
(34)

With this conditional probability for the bath variables, the noise term F obeys the fluctuation–dissipation relations

$$\begin{aligned} \langle F\rangle _{\mathcal {P}}=0,~\langle F(t) F(\tau )\rangle _{\mathcal {P}}=k_BT\varGamma (t-\tau ), \end{aligned}$$
(35)

and hence, it is a colored Gaussian noise. Note that for a flat spectrum of the bath weighted with the coupling (the so-called Ohmic dissipation), we can use the Markovian approximation, where \(\varGamma (t-\tau )=2\langle g\rangle \delta (t-\tau )\) and \(\langle g\rangle /\pi \) is the averaged value of the spectrum. Hence, Eq. (33) reduces to

$$\begin{aligned} \ddot{x}+2\langle g\rangle G'^2(x)\dot{x}+V_\mathrm{ren}'(x)=G'(x) F, \end{aligned}$$
(36)

and F becomes a white Gaussian noise.

Comparison between Eqs. (14) and (36) reveals that, for both cases of discrete and continuous spectrum baths, the linear coupling is the source of the induced linear damping and the shift in the eigenfrequency of the resonator, and the nonlinear coupling leads to nonlinear damping and modifications in the nonlinear conservative terms of the resonator. However, for the case of a continuous spectrum bath there are also fluctuating back-action terms that come along with the damping terms and balance them, i.e., the linear damping is associated with an additive noise term \(2\langle g\rangle G'^2(0)\dot{x}\longleftrightarrow G'(0)\tilde{F}\) and the nonlinear damping with a multiplicative noise \(2\langle g\rangle [G'^2(x)-G'^2(0)]\dot{x}\longleftrightarrow [G'(x)-G'(0)]\tilde{F}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoshani, O., Dykman, M.I. & Shaw, S.W. Tuning linear and nonlinear characteristics of a resonator via nonlinear interaction with a secondary resonator. Nonlinear Dyn 99, 433–443 (2020). https://doi.org/10.1007/s11071-019-05194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05194-0

Keywords

Navigation