Skip to main content
Log in

A nonlinear approach for modeling rail flexibility using the absolute nodal coordinate formulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes a new nonlinear formulation based on the absolute nodal coordinate formulation (ANCF) for modeling the dynamic interaction between rigid wheels and flexible rails. The generalized forces and spin moments at the contact points are formulated in terms of the absolute coordinates and gradients of ANCF finite elements used to model the rail. To this end, a new procedure for formulating the generalized ANCF applied moment based on a continuum mechanics approach is introduced. The generalized moment is calculated using the spin tensor defined in terms of the gradients at the contact points, and therefore, the use of this approach does not require the use of angles. In order to have an accurate definition of the creepages, the location and velocity of the contact points are updated online using the rail deformations. An elastic contact formulation is used to define the contact forces that enter into the dynamic formulation of the system equations of motion. An elastic line approach is used to define the rail stress forces, and the relative slip between the rigid wheel and the flexible rail is iteratively updated using the deformations of the ANCF finite elements. The formulation proposed in this investigation is demonstrated using a five-body railroad vehicle negotiating flexible rails. In order to validate the ANCF rail model, the obtained results are compared with previously published results obtained using the floating frame of reference formulation that employs eigenmodes. The comparative study presented in this paper shows that there is, in general, a good agreement between the results obtained using the two different formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

\(\xi _x \) :

Longitudinal creepage

\(\xi _y \) :

Lateral creepage

\(\xi _s \) :

Spin creepage

\(\mathbf{v}_c^\mathrm{{w}}\) :

Wheel’s contact point c velocity vector

\(\mathbf{v}_c^\mathrm{{r}}\) :

Rail’s contact point c velocity vector

\(\mathbf{t}_1^\mathrm{{r}}\) :

Longitudinal tangent to the rail surface

\(\mathbf{t}_2^\mathrm{{r}}\) :

Lateral tangent to the rail surface

\(\mathbf{n}_1^\mathrm{{r}}\) :

Normal vector to the rail surface

\(\mathbf{r}\) :

Global position of a point in a rigid/flexible body

\(\mathbf{r}_0\) :

Global position of the body frame of reference

\(\mathbf{A}\) :

Orthonormal orientation matrix

\(\bar{\mathbf{u}}\) :

Local position vector of a deformed point

\(\bar{\mathbf{u}}_0\) :

Local undeformed position vector

\(\bar{\mathbf{u}}_\mathrm{{f}}\) :

Local, linear elastic displacement vector

\({\varvec{\Phi }}\) :

Modal matrix for FFR

\(\mathbf{q}_\mathrm{{r}}\) :

Reference coordinates in FFR

\(\mathbf{q}_\mathrm{{f}}\) :

Elastic coordinates in FFR

\({\varvec{\upomega }}\) :

Angular velocity vector

\({\varvec{\uptheta }}_\mathrm{{f}}\) :

Linearized set of angles describing body’s flexibility

\({\varvec{\uptheta }}\) :

Finite rotational parameters

\(\mathbf{S}(x,y,z)\) :

ANCF shape function matrix

\(\mathbf{e}\) :

Absolute nodal coordinates vector

\(\mathbf{L}\) :

Velocity gradient tensor

\(\mathbf{W}\) :

Spin tensor

\(\mathbf{D}\) :

Rate of deformation tensor

\(\mathbf{J}\) :

Position vector gradient tensor

\({\bar{\mathbf{R}}}\) :

Orthogonal tensor from polar decomposition of \(\mathbf{J}\)

\(\mathbf{U}\) :

Symmetric stretch tensor from polar decomposition of \(\mathbf{J}\)

\({\varvec{\upomega }}_\mathrm{{r}}\) :

Rigid body angular velocity vector

\({\varvec{\upomega }}_\mathrm{{f}}\) :

Spin deformation vector

\(\tilde{\varvec{\upomega }}_\alpha \) :

Skew symmetric tensor associated with vector \({\varvec{\upomega }}_\alpha \)

\(\mathbf{G}\) :

Linear operator to obtain ANCF generalized moment

\(\mathbf{M}\) :

External Cartesian moment

\(\mathbf{F}\) :

External force

\(s_1^\mathrm{{r}} ,s_2^\mathrm{{r}}\) :

Parameters defining rail surface

\(s_1^\mathrm{{w}} ,s_2^\mathrm{{w}}\) :

Parameters defining wheel surface

\(\mathbf{B}\) :

Velocity transformation matrix

References

  1. Grassie, S.L., Gregory, R.W., Harrison, D., Johnson, K.L.: The dynamic response of railway track to high frequency vertical excitation. J. Mech. Eng. Sci. 24(2), 77–90 (1982)

    Article  Google Scholar 

  2. Esveld, C.: Modern Railway Track, 2nd edn. Delft University of Technology, MRT-Productions, The Netherlands (2001)

    Google Scholar 

  3. Szolc, T.: Simulation of bending–torsional–lateral vibrations of the railway wheelset–track system in the medium frequency range. Veh. Syst. Dyn. 30, 473–508 (1998)

    Article  Google Scholar 

  4. Popp, K., Kruse, H., Kaiser, I.: Vehicle-track dynamics in the mid-frequency range. Veh. Syst. Dyn. 31, 423–464 (1999)

    Article  Google Scholar 

  5. Andersson, C., Abrahamsson, T.: Simulation of Interaction between a train in general motion and a track. Veh. Syst. Dyn. 38(6), 433–455 (2002)

    Article  Google Scholar 

  6. Escalona, J.L., Sugiyama, H., Shabana, A.A.: Modelling of structural flexibility in multibody railroad vehicle systems. Veh. Syst. Dyn. 51(7), 1027–1058 (2013)

    Article  Google Scholar 

  7. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, New York (2013)

    Book  MATH  Google Scholar 

  8. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  9. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2013)

    Article  MATH  Google Scholar 

  10. Romero, I., Arribas, J.J.: A simple method to impose rotations and concentrated moments on ANC beams. Multibody Syst. Dyn. 21, 307–323 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, C., Tian, Q., Hu, H., Garcia-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid–flexible multibody systems. Nonlinear Dyn. 69, 127–147 (2012)

  12. Shabana, A.A., Chamorro, R., Rathod, C.: A multi-body system approach for finite-element modelling of rail flexibility in railroad vehicle applications. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 222, 1–15 (2008)

    Google Scholar 

  13. Recuero, A.M., Escalona, J.L., Shabana, A.A.: Finite-element analysis of unsupported sleepers using three-dimensional wheel–rail contact formulation. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 225, 153–165 (2011)

    Google Scholar 

  14. Recuero, A.M., Escalona, J.L.: Application of the trajectory coordinate system and the moving modes method approach to railroad dynamics using Krylov subspaces. J. Sound Vib. 332(20), 5177–5191 (2013)

    Article  Google Scholar 

  15. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publishers, Dordrecht (1990)

    Book  MATH  Google Scholar 

  16. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, West Sussex (2000)

    MATH  Google Scholar 

  17. de Jalón, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  18. Shabana, A.A., Zaazaa, K.Z., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  19. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123, 606–613 (2001)

    Article  Google Scholar 

  20. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 5, 011010 (2010)

    Article  Google Scholar 

  21. Hamed, A.M., Jayakumar, P., Letherwood, M., Gorsich, D., Recuero, A.M., Shabana, A.A.: Ideal compliant joints and integration of computer aided design and analysis. ASME J. Comput. Nonlinear Dyn. (2014). doi:10.1115/1.4027999

  22. Nielsen, J.C.O., Igeland, A.: Vertical dynamic interaction between train and track-influence of wheel and track imperfections. J. Sound Vib. 187(5), 825–839 (1995)

    Article  Google Scholar 

  23. Wehage, R.: Generalized coordinate partitioning in dynamic analysis of mechanical systems. Ph.D. dissertation, University of Iowa, Iowa City (1980)

Download references

Acknowledgments

This research was supported by the National University Rail (NURail) Center, a US DOT-OST Tier 1 University Transportation Center and the Spanish Ministry of Science and Innovation (MICINN) under Project Reference TRA2010-16715. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Shabana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recuero, A.M., Aceituno, J.F., Escalona, J.L. et al. A nonlinear approach for modeling rail flexibility using the absolute nodal coordinate formulation. Nonlinear Dyn 83, 463–481 (2016). https://doi.org/10.1007/s11071-015-2341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2341-5

Keywords

Navigation