Skip to main content
Log in

Dynamic model based nonlinear tracking control of a planar parallel manipulator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the dynamic model, a novel nonlinear tracking controller is developed to overcome the nonlinear dynamics and friction of a planar parallel manipulator. The dynamic model is formulated in the active joint space, and the active joint friction is described with the Coulomb + viscous friction model. A nonlinear tracking controller is designed to eliminate the tracking error by using the power function. The nonlinear tracking controller is proven to guarantee asymptotic convergence to zero of both the tracking error and error rate with the Barbalat’s lemma. The trajectory tracking experiment of the proposed controller is implemented on an actual five-bar planar parallel manipulator both at the low-speed and high-speed motion. Moreover, the control performances of the proposed controller are compared with the results of the augmented PD (APD) controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merlet, J.P.: Parallel Robots, 2nd edn. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  2. Wang, J., Wang, J.S., Li, T.M., Wang, L.P.: Performance analysis and application of a redundantly actuated parallel manipulator for milling. J. Intell. Robot Syst. 50(2), 163–180 (2007)

    Article  Google Scholar 

  3. Bamberger, H., Shoham, M.: A novel six degrees-of-freedom parallel robot for MEMS fabrication. IEEE Trans. Robot. 23(2), 189–195 (2007)

    Article  Google Scholar 

  4. Dasgupta, B., Mruthyunjaya, T.S.: The Stewart platform manipulator: a review. Mech. Mach. Theory 35(1), 15–40 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, Y.M., Xu, Q.S.: Design and development of a medical parallel robot for cardiopulmonary resuscitation. IEEE/ASME Trans. Mechatron. 12(3), 265–273 (2007)

    Article  Google Scholar 

  6. Xu, W.L., Pap, J.-S., Bronlund, J.: Design of a biologically inspired parallel robot for foods chewing. IEEE Trans. Ind. Electron. 55(2), 832–841 (2008)

    Article  Google Scholar 

  7. Hahn, H.: Mathematical modeling control, computer simulation and laboratory experiments of a spatial servopneumatic parallel robot. Part I: Mathematical models, controllers, and computer simulations. Nonlinear Dyn. 40(4), 387–417 (2005)

    Article  MATH  Google Scholar 

  8. Su, Y.X., Duan, B.Y., Zheng, C.H.: Nonlinear PID control of a six-DOF parallel manipulator. IEE Proc. Control Theory Appl. 151(1), 95–102 (2004)

    Article  Google Scholar 

  9. Aubin, P.M., Cowley, M.S., Ledoux, W.R.: Gait simulation via a 6-DOF parallel robot with iterative learning control. IEEE Trans. Biomed. Eng. 55(3), 1237–1240 (2008)

    Article  Google Scholar 

  10. Cheng, H., Yiu, Y.K., Li, Z.X.: Dynamics and control of redundantly actuated parallel manipulators. IEEE Trans. Mechatron. 8(4), 483–491 (2003)

    Article  Google Scholar 

  11. Zhang, Y.X., Cong, S., Shang, W.W., Li, Z.X., Jiang, S.L.: Modeling, identification and control of a redundant planar 2-DOF parallel manipulator. Int. J. Control Autom. Syst. 5(5), 559–569 (2007)

    Google Scholar 

  12. Yang, Z.Y., Wu, J., Mei, J.P.: Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics 17(7), 381–390 (2007)

    Article  Google Scholar 

  13. Nahavandi, S., Uddin, M.J., Saadat, M., Trinh, H.: Heavy tools manipulation by low powered direct-drive five-bar parallel robot. Mech. Mach. Theory 43(11), 1450–1461 (2008)

    Article  MATH  Google Scholar 

  14. Vivas, A., Poignet, P.: Predictive functional control of a parallel robot. Control Eng. Pract. 13(7), 863–874 (2005)

    Article  Google Scholar 

  15. Duchaine, V., Bouchard, S., Gosselin, C.M.: Computationally efficient predictive robot control. IEEE/ASME Trans. Mechatron. 12(5), 570–578 (2007)

    Article  Google Scholar 

  16. Zhu, X.C., Tao, G.L., Yao, B., Cao, J.: Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy. IEEE/ASME Trans. Mechatron. 13(4), 441–450 (2008)

    Article  Google Scholar 

  17. Shang, W.W., Cong, S.: Nonlinear adaptive task space control for a 2-DOF redundantly actuated parallel manipulator. Nonlinear Dyn. doi:10.1007/s11071-009-9520-1

  18. Shang, W.W., Cong, S., Zhang, Y.X., Liang, Y.Y.: Active joint synchronization control for a 2-DOF redundantly actuated parallel manipulator. IEEE Trans. Control Syst. Technol. 17(2), 416–423 (2009)

    Article  Google Scholar 

  19. Shang, W.W., Cong, S., Zhang, Y.X.: Nonlinear friction compensation of a 2-DOF planar parallel manipulator. Mechatronics 18(7), 340–346 (2008)

    Article  Google Scholar 

  20. Jin, M.L., Kang, S.H., Chang, P.H.: Robust compliant motion control of robot with nonlinear friction using time-delay estimation. IEEE Trans. Ind. Electron. 55(1), 258–269 (2008)

    Article  Google Scholar 

  21. Murray, R., Li, Z.X., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  22. Park, F.C., Kim, J.M.: Singularity analysis of closed kinematic chains. ASME J. Mech. Des. 121(1), 32–38 (1999)

    Article  Google Scholar 

  23. Han, J.Q.: Nonlinear PID controller. Acta Automat. Sinica 20(4), 487–490 (1994)

    Google Scholar 

  24. Slotine, J.-J.E., Li, W.P.: Applied Nonlinear Control. Englewood Cliffs, Prentice Hall (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-wei Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Ww., Cong, S. & Jiang, Sl. Dynamic model based nonlinear tracking control of a planar parallel manipulator. Nonlinear Dyn 60, 597–606 (2010). https://doi.org/10.1007/s11071-009-9617-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9617-6

Navigation