Skip to main content
Log in

Nonlinear analysis of time-delay position feedback control of container cranes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Time-delay feedback control of container cranes is robustly stable and insensitive to initial conditions for most of the linearly stable region. To better understand this robustness and any limitations of the technique, we undertake a nonlinear analysis of the system. To this end, we develop a nonlinear model of the crane system by modeling the crane-hoist-payload assembly as a double pendulum. Then, we derive a linear approximation specific to this model. Finally, we derive a cubic model of the dynamics for nonlinear analysis. Using linear analysis, we determine the gain and time delay factors for stabilizing controllers. Also, we show that the controller undergoes a Hopf bifurcation at the linear stability boundary. Using the method of multiple scales on the cubic model, we determine the normal form of the Hopf bifurcation. We then show that for practical operating ranges, the controller undergoes a supercritical bifurcation that helps explain the robustness of the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: A review. J. Vib. Control 9, 863–908 (2003)

    Article  MATH  Google Scholar 

  2. Golafshani, A.R., Aplevich, J.D.: Computation of time-optimal trajectories for tower cranes. In: Proceedings of the IEEE Conference on Control Applications, pp. 1134–1139 (1995)

  3. Alsop, C.F., Forster, G.A., Holmes, F.R.: Ore unloader automation—a feasibility study. In: Proceedings of IFAC on Systems Engineering for Control Systems, pp. 295–305 (1965)

  4. Carbon, L.: Automation of grab cranes. Siemens Rev. XLIII 2, 80–85 (1976)

    Google Scholar 

  5. Jones, J.F., Petterson, B.J.: Oscillation damped movement of suspended objects. In: Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PA, vol. 2, pp. 956–962 (1988)

  6. Noakes, M.W., Jansen, J.F.: Shaping inputs to reduce vibration for suspended payloads. In: Proceedings of the 4th ANS Topical Meeting on Robotics and Remote Systems, Albuquerque, NM, pp. 141–150 (1990)

  7. Noakes, M.W., Petterson, B.J., Werner, J.C.: An application of oscillation damped motion for suspended payloads to the advanced integrated maintenance system. In: Proceedings of the 38th Conference on Remote Systems Technology, San Francisco, CA, vol. 1, pp. 63–68 (1990)

  8. Noakes, M.W., Jansen, J.F.: Generalized inputs for damped-vibration control of suspended payloads. Robot. Auton. Syst. 10(2), 199–205 (1992)

    Article  Google Scholar 

  9. Zinober, A.S., Fuller, A.T.: The sensitivity of normally time-optimal control of systems to parameter variation. Int. J. Control 17, 673–703 (1973)

    Article  MATH  Google Scholar 

  10. Virkkunen, J., Marttinen, A.: Computer control of a loading bridge. In: Proceedings of the IEE International Conference: Control’88, Oxford, UK, pp. 484–488 (1988)

  11. Yoon, J.S., Park, B.S., Lee, J., Park, H.S.: Various control schemes for implementation of the anti-swing crane. In: Proceedings of the ANS 6th Topical Meeting on Robotics and Remote Systems, Monterey, CA, pp. 472–479 (1995)

  12. Singhose, W.E., Porter, L.J., Seering, W.P.: Input shaped control of a planar crane with hoisting. In: Proceedings of the American Control Conference, Albuquerque, NM, pp. 97–100 (1997)

  13. Nayfeh, N.A., Masoud, Z.N., Baumann, W.T.: A comparison of three feedback controllers for container cranes. In: ASME IDETC (2005)

  14. Yong-Seok, A., Hyungbo, S., Hidemasa, Y., Naoki, F., Hideshi, K., Seung-Ki, S.: A new vision-sensoreless anti-sway control system for container cranes. In: IEEE Industry Applications Conference, Salt Lake City, UT, vol. 1, pp. 262–269 (2003)

  15. Yong-Seok, A., Keum-Shik, H., Seung-Ki, S.: Anti-sway control of container cranes: inclinometer, observer, and state feedback. Int. J. Control Autom. Syst. 2(4), 435–449

  16. DeSantis, R.M., Krau, S.: Bang-bang motion of a Cartesian crane. Robotica 12, 174–177 (1994)

    Article  Google Scholar 

  17. Henry, R.J., Masoud, Z.N., Nayfeh, A.H., Mook, D.T.: Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation. J. Vib. Control 7, 1253–1264 (2001)

    Article  MATH  Google Scholar 

  18. Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003)

    Article  MATH  Google Scholar 

  19. Nayfeh, N.A.: Adaptation of delayed position feedback to the reduction of sway of container cranes. Master’s thesis, Virginia Polytechnic Institute and State University (2002)

  20. Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics–applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997)

    Article  Google Scholar 

  21. Stone, E., Campbell, S.: Stability and bifurcation analysis of a nonlinear dde model for drilling. J. Nonlinear Sci. 14(1), 27–57 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nayfeh, A.H.: Method of Normal Forms. Wiley–Interscience, New York (1993)

    Google Scholar 

  23. Masoud, Z.N., Nayfeh, A.H., Al-Mousa, A.: Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. J. Vib. Control 9(1), 257–277 (2003)

    Article  MATH  Google Scholar 

  24. Hartman, P.: A lemma in the theory of structural stability of differential equations. In: Proceedings of the American Mathematical Society, vol. 11, pp. 610–620 (1960)

  25. Grobman, D.M.: Homeomorphisms of systems of differential equations. Dokl. Akad. Nauk SSSR 128 (1959)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader A. Nayfeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayfeh, N.A., Baumann, W.T. Nonlinear analysis of time-delay position feedback control of container cranes. Nonlinear Dyn 53, 75–88 (2008). https://doi.org/10.1007/s11071-007-9297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9297-z

Keywords

Navigation