Skip to main content

Advertisement

Log in

A General Equilibrium Framework for Integrated Assessment of Transport and Economic Impacts

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

The use of separate transport and economic models in urban planning provides a limited view of economic impacts, restricts the testing of network design options and lengthens the planning process. Furthermore, the standard methodology for economic appraisal assumes partial economic equilibrium and cannot determine the distribution of impacts from the transport sector to households. Computable general equilibrium (CGE) models can capture general equilibrium effects and measure welfare at the household level, but mostly lack integration with transport models and do not represent all trip generators. This paper develops an integrated traffic assignment and spatial CGE model in nonlinear complementarity form, casted as a framework for economic appraisal of urban transport projects. The CGE submodel generates commuting, shopping and leisure trips as inputs into the transport submodel, which then assigns trips to the network according to user equilibrium. The resulting travel times then feed back into household prices and freight margins. Households and firms fully account for travel times in decisions on where to shop, how much labour to supply and where to source production inputs. Calibration and applications of the model are demonstrated for 14 regions and 2 industries across Sydney using GAMS/PATH on the NEOS server. The welfare of various network improvements is measured using equivalent variations. The model can be calibrated to external strategic transport models, and be extended to simulate additional trip generators and land-use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anas A, Liu Y (2007) A regional economy, land use, and transportation model (RELU-TRAN©): formulation, algorithm design, and testing. J Reg Sci 47:415–455. doi:10.1111/j.1467-9787.2007.00515.x

    Article  Google Scholar 

  • Anderson SP, Palma AD, Thisse J-F (1989) Demand for differentiated products, discrete choice models, and the characteristics approach. Rev Econ Stud 56:21–35. doi:10.2307/2297747

    Article  Google Scholar 

  • Armington PS (1969) A theory of demand for products distinguished by place of production. Staff Pap (Int Monet Fund) 16:159–178. doi:10.2307/3866403

    Article  Google Scholar 

  • Berg C (2007) Household transport demand in a CGE-framework. Environ Resour Econ 37:573–597. doi:10.1007/s10640-006-9050-y

    Article  Google Scholar 

  • Boyce D (2007) Forecasting travel on congested urban transportation networks: review and prospects for network equilibrium models. Netw Spat Econ 7:99–128. doi:10.1007/s11067-006-9009-0

    Article  Google Scholar 

  • Briceño L, Cominetti R, Cortés CE, Martínez F (2008) An integrated behavioral model of land use and transport system: a hyper-network equilibrium approach. Netw Spat Econ 8:201–224. doi:10.1007/s11067-007-9052-5

    Article  Google Scholar 

  • Bröcker J, Mercenier J (2011) General equilibrium models for transportation economics. In: Palma AD, Lindsey R, Quinet E, Vickerman R (eds) A handbook of transport economics. Edward Elgar Publishing, Cheltenham, pp 21–45

    Google Scholar 

  • Bröcker J, Meyer R, Schneekloth N, et al (2004) Modelling the Socio-economic and Spatial Impacts of EU Transport Policy. Christian-Albrechts-Universität Kiel/Institut für Raumplanung, Universität Dortmund, Kiel/Dortmund.

  • Bröcker J, Korzhenevych A, Schürmann C (2010) Assessing spatial equity and efficiency impacts of transport infrastructure projects. Transp Res B Methodol 44:795–811. doi:10.1016/j.trb.2009.12.008

    Article  Google Scholar 

  • Buckley PH (1992) A transportation-oriented interregional computable general equilibrium model of the United States. Ann Reg Sci 26:331–348. doi:10.1007/BF01581865

    Article  Google Scholar 

  • Bureau of Transport Statistics (2011) Sydney strategic travel model (STM): modelling future travel patterns. NSW Government, Sydney

    Google Scholar 

  • Czyzyk J, Mesnier MP, More JJ (1998) The NEOS server. IEEE Comput Sci Eng 5:68–75. doi:10.1109/99.714603

    Article  Google Scholar 

  • Dixon PB, Parmenter BR, Sutton J, Vincent DP (1982) ORANI: A multisectoral model of the Australian economy. North-Holland Pub. Co., Amsterdam

  • Ferris MC, Munson TS (2000) Complementarity problems in GAMS and the PATH solver. J Econ Dyn Control 24:165–188. doi:10.1016/S0165-1889(98)00092-X

    Article  Google Scholar 

  • Ferris MC, Meeraus A, Rutherford TF (1999) Computing Wardropian equilibria in a complementarity framework. Optim Method Softw 10:669–685. doi:10.1080/10556789908805733

    Article  Google Scholar 

  • Friesz TL, Suo Z-G, Westin L (1998) Integration of freight network and computable general equilibrium models. In: Lundqvist PL, Mattsson PL-G, Kim PTJ (eds) Network infrastructure and the urban environment. Springer, Berlin Heidelberg, pp 212–223

    Chapter  Google Scholar 

  • Fujita M, Krugman P (2004) The new economic geography: past, present and the future. Pap Reg Sci 83:139–164. doi:10.1007/s10110-003-0180-0

    Article  Google Scholar 

  • Haddad EA, Hewings GJ, Perobelli FS, Santos RC (2010) Regional effects of port infrastructure: a spatial CGE application to Brazil. Int Reg Sci Rev. doi:10.1177/0160017610368690

  • Hamdouch Y, Qiang QP, Ghoudi K (2016) A closed-loop supply chain equilibrium model with random and price-sensitive demand and return. Netw Spat Econ:1–45. doi:10.1007/s11067-016-9333-y

  • Holl A, Mariotti I (2017) The geography of logistics firm location: the role of accessibility. Netw Spat Econ:1–25. doi:10.1007/s11067-017-9347-0

  • Horridge M (1994) A computable general equilibrium model of urban transport demands. J Policy Model 16:427–457. doi:10.1016/0161-8938(94)90037-X

    Article  Google Scholar 

  • Karamardian S (1969) The nonlinear complementarity problem with applications, part 1. J Optim Theory Appl 4:87–98. doi:10.1007/BF00927414

    Article  Google Scholar 

  • Kim E, Hewings GJD, Hong C (2004) An application of an integrated transport network–multiregional CGE model: a framework for the economic analysis of highway projects. Econ Syst Res 16:235–258. doi:10.1080/0953531042000239356

    Article  Google Scholar 

  • Kishimoto PN, Zhang D, Zhang X, Karplus VJ (2014) Modeling regional transportation demand in China and the impacts of a National Carbon Policy. Transportation Research Record: Journal of the Transportation Research Board 2454.

  • Koike A, Tavasszy L, Sato K (2009) Spatial equity analysis on expressway network development in Japan: empirical approach using the spatial computable general equilibrium model RAEM-light. Transp Res Rec: J Transp Res B 2133:46–55. doi:10.3141/2133-05

  • Lakshmanan TR (2011) The broader economic consequences of transport infrastructure investments. J Transp Geogr 19:1–12. doi:10.1016/j.jtrangeo.2010.01.001

    Article  Google Scholar 

  • Lenzen M, Geschke A, Wiedmann T et al (2014) Compiling and using input–output frameworks through collaborative virtual laboratories. Sci Total Environ 485–486:241–251. doi:10.1016/j.scitotenv.2014.03.062

    Article  Google Scholar 

  • Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory. Oxford University Press, New York

    Google Scholar 

  • Mayeres I (2000) The efficiency effects of transport policies in the presence of externalities and distortionary taxes. J Transp Econ Policy 34:233–259. doi:10.2307/20053841

    Google Scholar 

  • Patriksson M (2004) Algorithms for computing traffic equilibria. Netw Spat Econ 4:23–38. doi:10.1023/B:NETS.0000015654.56554.31

    Article  Google Scholar 

  • Pink B (2011) Australian statistical geography standard (ASGS): volume 1 - main structure and greater Capital City statistical areas. Australian Bureau of Statistics, Canberra

    Google Scholar 

  • Rutherford TF, van Nieuwkoop R (2011) An integrated transport network-computable general equilibrium models for Zurich. Swiss Transport Research Conference, Monte Verita, Ascona (Ticino)

    Google Scholar 

  • Shoven JB, Whalley J (1992) Applying general equilibrium. Cambridge University Press

  • Siegesmund P, Luskin D, Fujiwara L, Tsigas M (2008) A computable general equilibrium model of the U.S. economy to evaluate maritime infrastructure investments. Transp Res Rec: J Transp Res B 2062:32–38. doi:10.3141/2062-05

  • Takayama T, Judge GG (1971) Spatial and temporal price and allocation models. Contributions to economic analysis, 73. North-Holland Pub. Co., Amsterdam

  • Tavasszy LA, Thissen MJPM, Oosterhaven J (2011) Challenges in the application of spatial computable general equilibrium models for transport appraisal. Res Transp Econ 31:12–18. doi:10.1016/j.retrec.2010.11.003

    Article  Google Scholar 

  • Thissen M (2005) RAEM: regional applied general equilibrium model for the Netherlands. In: van Oort F, Thissen M, van Wissen L (eds) A survey of spatial economic planning models in the Netherlands: theory. Application and Evaluation. NAi Publishers, Rotterdam, pp 63–86

    Google Scholar 

  • Transport for NSW (2013) Principles and guidelines for economic appraisal of transport investment and initiatives. NSW Government, Sydney

    Google Scholar 

  • Truong TP, Hensher DA (2012) Linking discrete choice to continuous demand within the framework of a computable general equilibrium model. Transp Res B Methodol 46:1177–1201. doi:10.1016/j.trb.2012.06.001

    Article  Google Scholar 

  • Vandyck T, Rutherford TF (2014) Regional labor markets, commuting and the economic impact of road pricing. Fifth World Congress of Environmental and Resource Economists, Istanbul

    Google Scholar 

  • Waddell P, Borning A, Noth M et al (2003) Microsimulation of urban development and location choices: design and implementation of UrbanSim. Netw Spat Econ 3:43–67. doi:10.1023/A:1022049000877

    Article  Google Scholar 

  • Wegener M (2004) Overview of land-use transport models. In: Hensher DA, Button K (eds) Transport geography and spatial systems. Pergamon/Elsevier Science, Kidlington, pp 127–146

    Chapter  Google Scholar 

  • Zamparini L, Reggiani A (2007) Meta-analysis and the value of travel time savings: a transatlantic perspective in passenger transport. Netw Spat Econ 7:377. doi:10.1007/s11067-007-9028-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Tommy Wiedmann and Guangwu Chen of IELab for their generous assistance in providing input–output data, and thank two anonymous reviewers for their insightful comments that have materially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward N. Robson.

Appendices

Appendix A

1.1 Household Equations

Households are assumed to spend a constant share of their income on each type of good. Composite consumption c h is then a Cobb–Douglas combination of consumption from each industry c h , i :

$$ {c}_h=\prod_{i\in I}{c_{h, i}}^{\beta_{h, i}} $$
(27a)
$$ \sum_{i\in I}{\beta}_{h, i}=1 $$
(27b)

where β h , i is the Cobb–Douglas share parameter for c h , i . Total expenditure to obtain c h in terms of prices and travel time is:

$$ \sum_{i\in I}\left({p}_{c, h, i}+{p}_{t, h}\cdot {v}_{c, h, i}\right)\cdot {c}_{h, i} $$
(28)

where p c , h , i is the price index and v c , h , i is the travel time index to obtain c h , i . Since c h is already specified from the upper nest, minimising expenditure in equation (28) subject to the composite consumption function in equation (27a) yields:

$$ {c}_{h, i}={B}_{h, i}\cdot {c}_h $$
(29a)
$$ {B}_{h, i}={\prod_{i^{\prime}\in I}\left(\frac{\beta_{h, i}\cdot \left({p}_{c, h, i}+{p}_{t, h}\cdot {v}_{c, h,{i}^{\prime }}\right)}{\beta_{h,{i}^{\prime }}\cdot \left({p}_{c, h, i}+{p}_{t, h}\cdot {v}_{c, h, i}\right)}\right)}^{\beta_{h,{i}^{\prime }}} $$
(29b)

where Β h , i is the input–output coefficient for c h , i . Due to the CRS specification, upper nest prices p c , h and travel times v c , h are:

$$ {p}_{c, h}=\sum_{i\in I}{B}_{h, i}\cdot {p}_{c, h, i} $$
(30a)
$$ {v}_{c, h}=\sum_{i\in I}{B}_{h, i}\cdot {v}_{c, h, i} $$
(30b)

Regional sources of goods from each industry are assumed to be imperfect substitutes. Composite consumption from each industry c h , i is then a CES combination of consumption from each region c h , (i, r):

$$ {c}_{h, i}={\left(\sum_{r\in R}{\gamma}_{h,\left( i, r\right)}\cdot {c}_{h,\left( i, r\right)}\right)}^{\frac{\sigma_{h, i}}{\sigma_{h, i}-1}} $$
(31a)
$$ \sum_{r\in R}{\gamma}_{h,\left( i, r\right)}=1 $$
(31b)

where γ h , (i, r) is the CES share parameter for c h , (i, r) and σ h , i is the elasticity of substitution for regional inputs of c h , i . Total expenditure to obtain c h , i is:

$$ \sum_{r\in R}\left({p}_{g,\left( i, r\right)}+{p}_{t, h}\cdot {v}_{c, h,\left( i, r\right)}\right)\cdot {c}_{h,\left( i, r\right)} $$
(32)

where p g , (i, r) is the price of good (i, r) and v c , h , (i, r) is the travel time required to obtain a unit of good (i, r). Minimising expenditure in equation (32) subject to the composite consumption function in equation (31a) yields:

$$ {c}_{h,\left( i, r\right)}={\Gamma}_{h,\left( i, r\right)}\cdot {c}_{h, i} $$
(33a)
$$ {\Gamma}_{h,\left( i, r\right)}={\left(\frac{\gamma_{h,\left( i, r\right)}}{p_{g,\left( i, r\right)}+{p}_{t, h}\cdot {v}_{c, h,\left( i, r\right)}}\right)}^{\sigma_{h, i}}\cdot {\left(\sum_{r\in R}{\gamma}_{h,{\left( i, r\right)}^{\sigma_{h, i}}}\cdot {\left({p}_{g\left( i, r\right)}+{p}_{t, h}\cdot {v}_{c, h,\left( i, r\right)}\right)}^{1-{\sigma}_{h, i}}\right)}^{\frac{\sigma_{h, i}}{\sigma_{h, i}-1}} $$
(33b)

where Γ h , (i, r) is the input–output coefficient for c h , (i, r). Similar to earlier, prices p c , h , i and travel times v c , h , i are:

$$ {p}_{c, h, i}=\sum_{r\in R}{\Gamma}_{h,\left( i, r\right)}\cdot {p}_{g,\left( i, r\right)} $$
(34a)
$$ {v}_{c, h, i}=\sum_{r\in R}{\Gamma}_{h,\left( i, r\right)}\cdot {v}_{c, h,\left( i, r\right)} $$
(34b)

Appendix B

1.1 Firm Equations

In accordance with the Armington assumption, composite intermediate input x g , f , j is a CES combination of sources from each region after transportation x g , f , (j, r):

$$ {x}_{g, f, j}={\left(\sum_{r\in R}{\theta}_{f,\left( j, r\right)}\cdot {x_{g, f,\left( j, r\right)}}^{\frac{\tau_{f, j}-1}{\tau_{f, j}}}\right)}^{\frac{\tau_{f, j}}{\tau_{f, j}-1}} $$
(35a)
$$ \sum_{r\in R}{\theta}_{f,\left( j, r\right)}=1 $$
(35b)

where θ f , (j, r) is the CES share parameter for x g , f , (j, r) and τ f , j is the elasticity of substitution for regional inputs of x g , f , j . Minimising expenditure to obtain x g , f , j yields:

$$ {x}_{g, f, j\left( j, r\right)}={\Theta}_{f,\left( j, r\right)}\cdot {x}_{g, f, j} $$
(36a)
$$ {\Theta}_{f,\left( j, r\right)}={\left(\frac{\theta_{f,\left( j, r\right)}}{p_{g, f,\left( j, r\right)}}\right)}^{\tau_{f, j}}\cdot {\left(\sum_{r\in R}{\theta_{f,\left( j, r\right)}}^{\tau_{f, j}}\cdot {p}_{g, f,\left( j, r\right)}\right)}^{\frac{\tau_{f, j}}{\tau_{f, j}-1}} $$
(36b)

where Θ f , (j, r) is the input–output coefficient and p g , f , (j, r) is the price index for x g , f , (j, r). Price index p g , f , j represents the cost of a unit of x g , f , j :

$$ {p}_{g, h, i}=\sum_{r\in R}{\theta}_{f,\left( j, r\right)}\cdot {p}_{g, f,\left( j, r\right)} $$
(37)

Quantity x g , f , (j, r) represents the input of good (j, r) after transportation to firm f’s region. Transportation from the good’s source to firm f’s region is accomplished by a Leontief combination of the good at its source x s , f , (j, r) and a freight margin x m , f , (j, r):

$$ {x}_{g, f,\left( j, r\right)}= \min \left({x}_{s, f,\left( j, r\right)},\frac{x_{m, f,\left( j, r\right)}}{\rho_{f,\left( j, r\right)}}\right) $$
(38)

where ρ f , (j, r) represents the units of transport required to relocate a unit of good (j, r) from its source region to firm f’s region. Minimising expenditure to obtain x g , f , (j, r) yields:

$$ {x}_{s, f,\left( j, r\right)}={x}_{g, f,\left( j, r\right)} $$
(39a)
$$ {x}_{m, f,\left( j, r\right)}={\rho}_{f,\left( j, r\right)}\cdot {x}_{g, f,\left( j, r\right)} $$
(39b)

The freight margin x m , f , (j, r) is supplied by the transport industry in the good’s source region x s , f , (1, r), such that:

$$ {x}_{s, f,\left(1, r\right)}=\sum_{j\in J}{x}_{m, f,\left( j, r\right)} $$
(40)

Price index p g , f , (j, r) is then:

$$ {p}_{g, f,\left( j, r\right)}={\rho}_{g,\left( j, r\right)}+{\rho}_{f,\left( j, r\right)}\cdot {p}_{g,\left(1, r\right)} $$
(41)

In the primary factor composite nest, x p , f is a CES combination of labour x l , f and capital x k , f :

$$ {x}_{p, f}={\left({\zeta}_{l, f}\cdot {x}_{l, f}\frac{\varphi_f-1}{\varphi_f}+{\zeta}_{k, f}\cdot {x_{k, f}}^{\frac{\varphi_f-1}{\varphi_f}}\right)}^{\frac{\varphi_f}{\varphi_f-1}} $$
(42a)
$$ {\zeta}_{l, f}+{\zeta}_{k, f}=1 $$
(42b)

where ζ l , f and ζ k , f are the CES share parameters for x l , f and x k , f respectively, and φ f is the elasticity of substitution between labour and capital. Minimising expenditure to obtain x p , f yields:

$$ {x}_{l, f}={\mathrm{Z}}_{l, f}\cdot {x}_{p, f} $$
(43a)
$$ {x}_{k, f}={\mathrm{Z}}_{k, f}\cdot {x}_{p, f} $$
(43b)
$$ {Z}_{l, f}={\left(\frac{\zeta_{l, f}}{p_{l, f}}\right)}^{\varphi_f}\cdot {\left({\zeta_{l, f}}^{\varphi_f}\cdot {p_{l, f}}^{1-{\varphi}_f}+{\zeta_{k, f}}^{\varphi_f}\cdot {p_k}^{1-{\varphi}_f}\right)}^{\frac{\varphi_f}{1-{\varphi}_f}} $$
(43c)
$$ {Z}_{k, f}={\left(\frac{\zeta_{k, f}}{p_{l, f}}\right)}^{\varphi_f}\cdot {\left({\zeta_{l, f}}^{\varphi_f}\cdot {p_{l, f}}^{1-{\varphi}_f}+{\zeta_{k, f}}^{\varphi_f}\cdot {p_k}^{1-{\varphi}_f}\right)}^{\frac{\varphi_f}{1-{\varphi}_f}} $$
(43d)

where Ζ l , f and Ζ k , f are the input–output coefficients for x l , f and x k , f respectively, p l , f is the labour wage and p k is the rental rate of capital. Price index p p , f is then:

$$ {p}_{p, f}={Z}_{l, f}\cdot {p}_{l, f}+{Z}_{k, f}\cdot {p}_k $$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robson, E., Dixit, V.V. A General Equilibrium Framework for Integrated Assessment of Transport and Economic Impacts. Netw Spat Econ 17, 989–1013 (2017). https://doi.org/10.1007/s11067-017-9356-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-017-9356-z

Keywords

Navigation