Skip to main content
Log in

Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function

  • Review
  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AC:

Anterior cingulate cortex

ACh:

Acetylcholine

AD:

Anterodorsal thalamic nucleus

AM:

Anteromedial thalamic nucleus

ATN:

Anterior thalamic nucleus

AV:

Anteroventral thalamic nucleus

AVVL:

Anteroventral ventrolateral nucleus

BAC:

Blood alcohol concentration

BDNF:

Brain derived neurotrophin factor

CE:

Complex environment

CET:

Chronic ethanol treatment

CL:

Central lateral thalamic nucleus

CM:

Central medial thalamic nucleus

DREADDs:

Designer Receptors Exclusively Activated by Designer Drugs

E:

Embryonic day

EAS:

Early acute stage

EC:

Entorhinal cortex

EE:

Enriched environment

FAS:

Fetal Alcohol Syndrome

FASD:

Fetal Alcohol Spectrum Disorders

HD:

Head direction

IAM:

Interoanteromedial thalamic nucleus

IkBa:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha

IL:

Infralimbic cortex

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IMD:

Intermediodorsal thalamic nuclei

KS:

Korsakoff Syndrome

LAS:

Late acute stage

MAS:

Middle acute stage

MO:

Medial orbital cortex

mPFC:

Medial prefrontal cortex

MRI:

Magnetic resonance imaging

MS/dB:

Medial septum/diagonal band

NGF:

Nerve growth factor

NMTP:

Non-matching-to-position

PC:

Paracentral thalamic nucleus

PD:

Postnatal day

PF:

Parafascicular thalamic nucleus

PL:

Prelimbic cortex

PTD:

Pyrithiamine-induced thiamine deficiency

Re:

Nucleus reuniens

Rh:

Rhomboid nucleus

SPF:

Subparafascicular thalamic nucleus

TNF-ɑ:

Tumor necrosis factor-ɑ

VEGF:

Vascular endothelial growth factor

WE:

Wernicke’s Encephalopathy

WKS:

Wernicke-Korsakoff Syndrome

References

  • Aggleton, J. P., Hunt, P. R., Nagle, S., & Neave, N. (1996). The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behavioural Brain Research, 81, 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Aggleton, J. P., & Nelson, A. J. (2015). Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neuroscience and Biobehavioral Reviews, 4, 131–144.

    Article  Google Scholar 

  • Aghaie, C. I., Hausknecht, K. A., Wang, R., Dezfuli, P. H., Haj-Dahmane, S., Kane, C. J., et al. (2019). Prenatal ethanol exposure and postnatal environmental intervention Alter dopaminergic neuron and microglia morphology in the ventral tegmental area during adulthood. Alcoholism, Clinical and Experimental Research. https://doi.org/10.1111/acer.14275

  • Akers, K. G., Kushner, S. A., Leslie, A. T., Clarke, L., van der Kooy, D., Lerch, J. P., & Frankland, P. W. (2011). Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice. Molecular Brain, 4. https://doi.org/10.1186/1756-6606-4-29

  • Ali, M., Cholvin, T., Muller, M. A., Cosquer, B., Kelche, C., Cassel, J. C., & Pereira de Vasconcelos, A. (2017). Environmental enrichment enhances system level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiology of Learning and Memory, 141, 108–123.

    Article  PubMed  Google Scholar 

  • Altman, J., & Bayer, S. A. (1979). Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. The Journal of Comparative Neurology, 188(3), 455–471. https://doi.org/10.1002/cne.901880308

    Article  CAS  PubMed  Google Scholar 

  • Angulo-Garcia, D., Ferraris, M., Ghestem, A., Bernard, C., & Quilichini, P. P. (2018). Spatio-temporal organization of cell assemblies in nucleus Reuniens during slow oscillations. BiorXiv. https://doi.org/10.1101/474973

  • Anzalone, S., Vetreno, R. P., Ramos, R. L., & Savage, L. M. (2010). Cortical cholinergic abnormalities contribute to the amnesic state induced by pyrithiamine-induced thiamine deficiency in the rat. The European Journal of Neuroscience, 32, 847–858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Archibald, S. L., Fennema-Notestine, C., Gamst, A., Riley, E. P., Mattson, S. N., & Jernigan, T. L. (2007). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Developmental Medicine and Child Neurology, 43(3), 148–154. https://doi.org/10.1111/j.1469-8749.2001.tb00179.x

    Article  Google Scholar 

  • Armstrong-James, M., Ross, D. T., Chen, F., & Ebner, F. F. (1988). The effect of thiamine deficiency on the structure and physiology of the rat forebrain. Metabolic Brain Disease, 3, 91–124.

    Article  CAS  PubMed  Google Scholar 

  • Aronne, M. P., Guadagnoli, T., Fontanet, P., Evrard, S. G., & Brusco, A. (2011). Effects of prenatal ethanol exposure on rat brain radial glia and neuroblast migration. Experimental Neurology, 229(2), 364–371. https://doi.org/10.1016/j.expneurol.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  • Bailey, K. R., & Mair, R. G. (2005). Lesions of specific and nonspecific thalamic nuclei affect prefrontal cortex-dependent aspects of spatial working memory. Behavioral Neuroscience, 119, 410–419.

    Article  PubMed  Google Scholar 

  • Barbas, H., Henion, T. H., & Dermon, C. R. (1991). Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. The Journal of Comparative Neurology, 313, 65–94.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, S. A. (1980). Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. The Journal of Comparative Neurology, 190(1), 87–114. https://doi.org/10.1002/cne.901900107

    Article  CAS  PubMed  Google Scholar 

  • Beracochea, D., Lescaudron, L., Verna, A., & Jaffard, R. (1987). Neuroanatomical effects of chronic ethanol consumption on dorsomedial and anterior thalamic nuclei and on substantia innominata in mice. Neuroscience Letters, 73, 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Berchtold, N. C., Castello, N., & Cotman, C. W. (2010). Exercise and time-dependent benefits to learning and memory. Neurosci, 167, 588–597.

    Article  CAS  Google Scholar 

  • Berendse, H. W., & Groenewegen, H. J. (1991). Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neurosci., 42, 73–102.

    Article  CAS  Google Scholar 

  • Bertram, E. H., & Zhang, D. X. (1999). Thalamic excitation of hippocampal CA1 neurons: A comparison with the effects of CA3 stimulation. Neurosci., 92, 15–26.

    Article  CAS  Google Scholar 

  • Bielawski, D. M., & Abel, E. L. (2002). The effect of administering ethanol as single vs. divided doses on blood alcohol levels in the rat. Neurotoxicology and Teratology, 24, 559–562. https://doi.org/10.1016/S0892-0362(02)00207-6

    Article  CAS  PubMed  Google Scholar 

  • Bobal, M. G., & Savage, L. M. (2015). The role of ventral midline thalamus in cholinergic-based recovery in the amnestic rat. Neuroscience., 285, 260–268.

    Article  CAS  PubMed  Google Scholar 

  • Bonthius, D. J., & West, J. R. (1990). Alcohol-induced neuronal loss in developing rats: Increased brain damage with binge exposure. Alcoholism, Clinical and Experimental Research, 14, 107–118. https://doi.org/10.1111/j.1530-0277.1990.tb00455.x

    Article  CAS  PubMed  Google Scholar 

  • Bonthius, D. J., & West, J. R. (1991). Permanent neuronal deficits in rats exposed to alcohol during the brain growth spurt. Teratology, 44, 147–163. https://doi.org/10.1002/tera.1420440203

    Article  CAS  PubMed  Google Scholar 

  • Boschen, K. E., McKeown, S. E., Roth, T. L., & Klintsova, A. Y. (2017). Impact of exercise and a complex environment on hippocampal dendritic morphology, Bdnf gene expression, and DNA methylation in male rat pups neonatally exposed to alcohol. Developmental Neurobiology, 77, 708–725. https://doi.org/10.1002/dneu.22448

    Article  CAS  PubMed  Google Scholar 

  • Bowyer, J. F., Tranter, K. M., Sarkar, S., & Hanig, J. P. (2018). Microglial activation and vascular responses that are associated with early thalamic neurodegeneration resulting from thiamine deficiency. Neurotox., 65, 98–110.

    Article  CAS  Google Scholar 

  • Brown, H. D., Baker, P. M., & Ragozzino, M. E. (2010). The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. The Journal of Neuroscience, 30, 14390–14398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burk, J. A., & Mair, R. G. (1998). Thalamic amnesia reconsidered: Excitotoxic lesions of the intralaminar nuclei, but not the mediodorsal nucleus, disrupt place delayed matching-to-sample performance in rats. Behavioral Neuroscience, 112, 54–67.

    Article  CAS  PubMed  Google Scholar 

  • Byatt, G., & Dalrymple-Alford, J. C. (1996). Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. Behavioral Neuroscience, 110, 1335–1348.

    Article  CAS  PubMed  Google Scholar 

  • Cadete-Leite, A., Pereira, P.A., Madeira, M.D., Paula-Barbosa, M.M. (2003). Nerve growth factor prevents cell death and induces hypertrophy of basal forebrain cholinergic neurons in rats withdrawn from prolonged ethanol intake. Neuroscience, 119, 1055–1069.

  • Calton, J.L., Stackman, R.W., Goodridge, J.P., Archey, W.B., Dudchenko, P.A., Taube, J.S. (2003). Hippocampal place cell instability after lesions of the head direction cell network, Journal of Neuroscience, 23, 9719–9731.

  • Cassel, J. C. (2013). The reuniens and rhomboid nuclei: Neuroanatomy, electrophysiological characteristics and behavioral implications. Progress in Neurobiology, 111, 34–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassel, J. C., & Pereira de Vasconcelos, A. (2015). Importance of the ventral midline thalamus in driving hippocampal functions. Progress in Brain Research, 219, 145–161.

    Article  PubMed  Google Scholar 

  • Caudill, M. A., Strupp, B. J., Muscalu, L., Nevins, J., & Canfield, R. L. (2018). Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: A randomized, double-blind, controlled feeding study. The FASEB Journal, 32, 2172–2180. https://doi.org/10.1096/fj.201700692RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell, T. D., Margret, C. P., Li, C. X., & Waters, R. S. (2007). Long-term effects of prenatal alcohol exposure on the size of the whisker representation in juvenile and adult rat barrel cortex. Alcohol, 41, 239–251. https://doi.org/10.1016/J.Alcohol.2007.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, D. T., Jacobson, S. W., Jacobson, J. L., Molteno, C. D., Stanton, M. E., & Desmond, J. E. (2015). Eyeblink classical conditioning in alcoholism and fetal alcohol spectrum disorders. Frontiers in Psychiatry.

  • Choi, I. Y., Allan, A. M., & Cunningham, L. A. (2005). Moderate fetal alcohol exposure impairs the neurogenic response to an enriched environment in adult mice. Alcoholism, Clinical and Experimental Research, 29, 2053–2062. https://doi.org/10.1097/01.alc.0000187037.02670.59

    Article  PubMed  Google Scholar 

  • Cholvin, T., Hok, V., Giorgi, L., Chaillan, F., & Poucet, B. (2018). Ventral midline thalamus is necessary for hippocampal place field stability and cell firing modulation. The Journal of Neuroscience, 38, 158–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cholvin, T., Loureiro, M., Cassel, R., Cosquer, B., Geiger, K., De Sa, N. D., … Cassel, J. C. (2013). The ventral midline thalamus contributes to strategy shifting in a memory task requiring both prefrontal cortical and hippocampal functions. The Journal of Neuroscience, 33, 8772–8783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie, B. R., Swann, S. E., Fox, C. J., Froc, D., Lieblich, S. E., Redila, V., & Webber, A. (2005). Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats. The European Journal of Neuroscience, 21, 1719–1726.

    Article  PubMed  Google Scholar 

  • Clark, B. J., & Taube, J. S. (2012). Vestibular and attractor network basis of the head direction cell signal in subcortical circuits. Front Neural Circuits., 6, 7. https://doi.org/10.3389/fncir.2012.00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Conner, J. M., Chiba, A. A., & Tuszynski, M. H. (2005). The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron, 46, 173–179. https://doi.org/10.1016/j.neuron.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  • Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.

    Article  CAS  PubMed  Google Scholar 

  • Cudd, T. A. (2005). Animal model systems for the study of alcohol teratology. Experimental Biology and Medicine, 230, 389–393. https://doi.org/10.1177/15353702-0323006-06

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple-Alford, J. C., Harland, B., Loukavenko, E. A., Perry, B., Mercer, S., Collings, D. A., … Wolff, M. (2015). Anterior thalamic nuclei lesions and recovery of function: Relevance to cognitive thalamus. Neuroscience and Biobehavioral Reviews, 54, 145–160.

    Article  PubMed  Google Scholar 

  • Davoodi, F. G., Motamedi, F., Naghdi, N., & Akbari, E. (2009). Effect of reversible inactivation of the reuniens nucleus on spatial learning and memory in rats using Morris water maze task. Behavioural Brain Research, 198, 130–135.

    Article  PubMed  Google Scholar 

  • Dias, G. P., Cocks, G., Do Nascimento Bevilaqua, M. C., Egidio Nardi, A., & Thuret, S. (2016). Resveratrol: A potential hippocampal plasticity enhancer. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/9651236

  • Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Human Development, 311, 79–83. https://doi.org/10.1016/0378-3782(79)90022-7

    Article  Google Scholar 

  • Dolleman-van der Weel, M. J., Griffin, A. L., Ito, H. T., Shapiro, M. L., Witter, M. P., Vertes, R. P., & Allen, T. A. (2019). The nucleus reuniens of the thalamus sits at the nexus of a hippocampus and medial prefrontal cortex circuit enabling memory and behavior. Learning & Memory, 26, 191–205.

    Article  Google Scholar 

  • Dolleman-Van der Weel, M. J., Lopes da Silva, F. H., & Witter, M. P. (1997). Nucleus reuniens thalami modulates activity in hippocampal field CA1 through excitatory and inhibitory mechanisms. The Journal of Neuroscience, 17, 5640–5650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolleman-van der Weel, M. J., Lopes da Silva, F. H., & Witter, M. P. (2017). Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat. Brain Structure & Function, 222, 2421–2438.

    Article  CAS  Google Scholar 

  • Dolleman-van der Weel, M. J., Morris, R. G., & Witter, M. P. (2009). Neurotoxic lesions of the thalamic reuniens or mediodorsal nucleus in rats affect non-mnemonic aspects of watermaze learning. Brain Structure & Function, 213, 329–342.

    Article  Google Scholar 

  • Dror, V., Eliash, S., Rehavi, M., Assaf, Y., Biton, I. E., & Fattal-Valevski, A. (2010). Neurodegeneration in thiamine deficient rats-a longitudinal MRI study. Brain Research, 1308, 176–184.

    Article  CAS  PubMed  Google Scholar 

  • Duan, A. R., Varela, C., Zhang, Y., Shen, Y., Xiong, L., Wilson, M. A., & Lisman, J. (2015). Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: Relevance to schizophrenia. Biological Psychiatry, 77, 1098–1107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudchenko, P. A., Wood, E. R., & Smith, A. (2019). A new perspective on the head direction cell system and spatial behavior. Neuroscience and Biobehavioral Reviews, 105, 24–33.

    Article  PubMed  Google Scholar 

  • Dumont, J. R., Amin, E., & Aggleton, J. P. (2014). Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. The European Journal of Neuroscience, 39, 241–256.

    Article  PubMed  Google Scholar 

  • Dunty Jr., W. C., Zucker, R. M., & Sulik, K. K. (2002). Hindbrain and cranial nerve Dysmorphogenesis result from acute maternal ethanol administration. Developmental Neuroscience, 24(4), 328–342.

    Article  CAS  PubMed  Google Scholar 

  • El Shawa, H., Abbott, C. W., & Huffman, K. J. (2013). Prenatal ethanol exposure disrupts intraneocortical circuitry, cortical gene expression, and behavior in a mouse model of FASD. The Journal of Neuroscience, 33, 18893–18905. https://doi.org/10.1523/JNEUROSCI.3721-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. The European Journal of Neuroscience, 18, 2803–2812.

  • Fagerlund, Å., Heikkinen, S., Autti-Rämö, I., Korkman, M., Timonen, M., Kuusi, T., et al. (2006). Brain metabolic alterations in adolescents and young adults with fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 30, 2097–2104. https://doi.org/10.1111/j.1530-0277.2006.00257.x

    Article  CAS  PubMed  Google Scholar 

  • Farber, N. B., Creeley, C. E., & Olney, J. W. (2010). Alcohol-induced neuroapoptosis in the fetal macaque brain. Neurobiology of Disease, 40, 200–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis, D. D., Champagne, F. A., Liu, D., & Meaney, M. J. (1999). Maternal care, gene expression, and the development of individual differences in stress reactivity. Academy of Sciences, 896, 66–84. https://doi.org/10.1111/j.1749-6632.1999.tb08106.x

    Article  CAS  Google Scholar 

  • Fuglestad, A. J., Fink, B. A., Eckerle, J. K., Boys, C. J., Hoecker, H. L., Kroupina, M. G., et al. (2013). Inadequate intake of nutrients essential for neurodevelopment in children with fetal alcohol spectrum disorders (FASD). Neurotoxicology and Teratology, 39, 128–132. https://doi.org/10.1016/j.ntt.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, K. I., Johnston, S., & Weinberg, J. (2002). Prenatal ethanol exposure and spatial navigation: Effects of postnatal handling and aging. Developmental Psychobiology, 40(4), 345–357.

    Article  CAS  PubMed  Google Scholar 

  • Gao, C., Leng, Y., Ma, J., Rooke, V., Rodriguez-Gonzalaez, S., Ramakrishman, C., et al. (2020). Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus. Nature Neuroscience. https://doi.org/10.1038/s41593-019-0572-3

  • Godin, E. A., O’Leary-Moore, S. K., Khan, A. A., Parnell, S. E., Ament, J. J., Dehart, D. B., et al. (2010). Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: Effects of acute insult on gestational day 7. Alcoholism, Clinical and Experimental Research, 34, 98–111. https://doi.org/10.1111/j.1530-0277.2009.01071.x

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Pinilla, F., Vaynman, S., & Ying, Z. (2008). Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. The European Journal of Neuroscience, 28, 2278–2287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodlett, C. R., Kelly, S. J., & West, J. R. (1987). Early postnatal alcohol exposure that produces high blood alcohol levels impairs development of spatial navigation learning. Psychobiology, 15, 64–74. https://doi.org/10.3758/BF03327265

    Article  CAS  Google Scholar 

  • Goodlett, C. R., & Lundahl, K. R. (1996). Temporal determinants of neonatal alcohol-induced cerebellar damage and motor performance deficits. Pharmacology, Biochemistry, and Behavior, 55, 531–540. https://doi.org/10.1016/S0091-3057(96)00248-1

    Article  CAS  PubMed  Google Scholar 

  • Granato, A., Santarelli, M., Sbriccoli, A., & Minciacchi, D. (1995). Multifaceted alterations of the thalamo-cortico-thalamic loop in adult rats prenatally exposed to ethanol. Anatomy and Embryology, 191(1), 11–23. https://doi.org/10.1007/bf00215293

    Article  CAS  PubMed  Google Scholar 

  • Griesbach, G. S., Hovda, D. A., & Gomez-Pinilla, F. (2009). Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Research, 1288, 105–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenewegen, H. J. (1988). Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience, 24, 379–431. https://doi.org/10.1016/0306-4522(88)90339-9

    Article  CAS  PubMed  Google Scholar 

  • Gursky, Z. H., & Klintsova, A. Y. (2017). Wheel running and environmental complexity as a therapeutic intervention in an animal model of FASD. Journal of Visualized Experiments, 54947. https://doi.org/10.3791/54947

  • Gursky, Z. H., Savage, L. M., & Klintsova, A. Y. (2019). Nucleus reuniens of the midline thalamus of a rat is specifically damaged after postnatal alcohol exposure. NeuroRep., 30, 748–752.

    Article  CAS  Google Scholar 

  • Gursky, Z. H., Spillman, E. C., & Klintsova, A. Y. (2020). Single-day postnatal alcohol exposure induces apoptotic cell death and causes long-term neuron loss in rodent thalamic nucleus reuniens. Neuroscience., 435, 124–134. https://doi.org/10.1016/j.neuroscience.2020.03.046

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. M., Gomez-Pinilla, F., & Savage, L. M. (2018). Nerve growth factor is responsible for exercise-induced recovery of septohippocampal cholinergic structure and function. Frontiers in Neuroscience, 12, 773. https://doi.org/10.3389/fnins.2018.00773

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, J. M., & Savage, L. M. (2016). Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ach efflux and spatial behavior. Experimental Neurology, 278, 62–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, J. M., Vetreno, R. P., & Savage, L. M. (2014). Differential cortical neurotrophin and cytogenetic adaptation after voluntary exercise in normal and amnestic rats. Neurosci., 258, 131–146.

    Article  CAS  Google Scholar 

  • Hallock, H. L., Wang, A., & Griffin, A. L. (2016). Ventral midline thalamus is critical for hippocampal-prefrontal synchrony and spatial working memory. The Journal of Neuroscience, 36, 8372–8389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallock, H. L., Wang, A., Shaw, C. L., & Griffin, A. L. (2013). Transient inactivation of the thalamic nucleus reuniens and rhomboid nucleus produces deficits of a working-memory dependent tactile-visual conditional discrimination task. Behavioral Neuroscience, 127, 860–866.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton, G. F., Boschen, K. E., Goodlett, C. R., Greenough, W. T., & Klintsova, A. Y. (2012). Housing in environmental complexity following wheel running augments survival of newly generated hippocampal neurons in a rat model of binge alcohol exposure during the third trimester equivalent. Alcoholism, Clinical and Experimental Research, 36, 1196–1204. https://doi.org/10.1111/j.1530-0277.2011.01726.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, G. F., Criss, K. J., & Klintsova, A. Y. (2015). Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats. Synapse, 69, 405–415. https://doi.org/10.1002/syn.21827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, G. F., Murawski, N. J., St.Cyr, S. A., Jablonski, S. A., Schiffino, F. L., Stanton, M. E., et al. (2011). Neonatal alcohol exposure disrupts hippocampal neurogenesis and contextual fear conditioning in adult rats. Brain Research, 1412, 88–101. https://doi.org/10.1016/J.BRAINRES.2011.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton, G. F., Whitcher, L. T., & Klintsova, A. Y. (2010). Postnatal binge-like alcohol exposure decreases dendritic complexity while increasing the density of mature spines in mPFC layer II/III pyramidal neurons. Synapse, 64, 127–135. https://doi.org/10.1002/syn.20711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan, A. J. (2014). Review: Environmental enrichment and brain repair: Harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathology and Applied Neurobiology, 40, 13–25. https://doi.org/10.1111/nan.12102

    Article  CAS  PubMed  Google Scholar 

  • Harding, A., Halliday, G., Caine, D., & Kril, J. (2000). Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain, 123, 141–154.

    Article  PubMed  Google Scholar 

  • Hauer, B. E., Pagliardini, S., & Dickson, C. T. (2019). The reuniens nucleus of the thalamus has an essential role in coordinating slow-wave activity between neocortex and hippocampus. eNeuro, 6.

  • Hazell, A. S., & Butterworth, R. F. (2009). Update of cell damage mechanisms in thiamine deficiency: Focus on oxidative stress, excitotoxicity and inflammation. Alcohol and Alcoholism, 44, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Hazell, A. S., Butterworth, R. F., & Hakim, A. M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentration in experimental thiamine deficiency. Journal of Neurochemistry, 61, 1155–1158.

    Article  CAS  PubMed  Google Scholar 

  • Hazell, A. S., Faim, S., Wertheimer, G., Silva, V. R., & Marques, C. S. (2013). The impact of oxidative stress in thiamine deficiency: A multifactorial targeting issue. Neurochemistry International, 62, 796–802.

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Sheedy D, Oanea R, Aghourian M, Sun S, Jung JY, Wang D, Wang C. (2010). Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia. 58, 148–156.

  • Heaton, M. B., Mitchell, J. J., Paiva, M., & Walker, D. W. (2000). Ethanol-induced alterations in the expression of neurotrophic factors in the developing rat central nervous system. Developmental Brain Research, 121, 97–107. https://doi.org/10.1016/S0165-3806(00)00032-8

    Article  CAS  PubMed  Google Scholar 

  • Hembrook, J. R., & Mair, R. G. (2011). Lesions of reuniens and rhomboid thalamic nuclei impair radial maze win-shift performance. Hippo., 21, 815–826.

    Google Scholar 

  • Hembrook, J. R., Onos, K. D., & Mair, R. G. (2012). Inactivation of ventral midline thalamus produces selective spatial delayed conditional discrimination impairment in the rat. Hippo., 22, 853–860.

    Article  CAS  Google Scholar 

  • Henriques, J. F., Portugal, C. C., Canedo, T., Relvas, J. B., Summavielle, T., & Socodato, R. (2018). Microglia and alcohol meet at the crossroads: Microglia as critical modulators of alcohol neurotoxicity. Toxicology Letters, 283, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Hoover, W. B., & Vertes, R. P. (2012). Collateral projections from nucleus reuniens of thalamus to hippocampus and medial prefrontal cortex in the rat: A single and double retrograde fluorescent labeling study. Brain Structure & Function, 217, 191–209.

    Article  Google Scholar 

  • Hoyme, H. E., Kalberg, W. O., Elliott, A. J., Blankenship, J., Buckley, D., Marais, A.-S., et al. (2016). Updated clinical guidelines for diagnosing fetal alcohol Spectrum disorders. Pediatrics, 138. https://doi.org/10.1542/peds.2015-4256

  • Idrus, N. M., Breit, K. R., & Thomas, J. D. (2017). Dietary choline levels modify the effects of prenatal alcohol exposure in rats. Neurotoxicology and Teratology, 59, 43–52. https://doi.org/10.1016/J.NTT.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou, C., Bittigau, P., Ishimaru, M. J., Wozniak, D. F., Koch, C., Genz, K., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science (80- ), 287, 1056–1060. https://doi.org/10.1126/science.287.5455.1056

    Article  CAS  Google Scholar 

  • Ito, H. T., Moser, E. I., & Moser, M. B. (2018). Supramammillary nucleus modulates spike-time coordination in the prefrontal-thalamo-hippocampal circuit during navigation. Neuron., 99, 576–587.

    Article  CAS  PubMed  Google Scholar 

  • Ito, H. T., Zhang, S. J., Witter, M. P., Moser, E. I., & Moser, M. B. (2015). A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature., 522, 50–55.

    Article  CAS  PubMed  Google Scholar 

  • Jankowski, M. M., Islam, M. N., Wright, N. F., Vann, S. D., Erichsen, J. T., Aggleton, J. P., & O'Mara, S. M. (2014). Nucleus reuniens of the thalamus contains head direction cells. Elife., 14, 3. https://doi.org/10.7554/eLife.03075

    Article  Google Scholar 

  • Jankowski, M. M., Ronnqvist, K. C., Tsanov, M., Vann, S. D., Wright, N. F., Erichsen, J. T., … O'Mara, S. M. (2013). The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Frontiers in Systems Neuroscience, 7, 45. https://doi.org/10.3389/fnsys.2013.00045

    Article  PubMed  PubMed Central  Google Scholar 

  • Jay, T. M., & Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. The Journal of Comparative Neurology, 313, 574–586.

    Article  CAS  PubMed  Google Scholar 

  • Jayachandran, M., Linley, S. B., Schlecht, M., Mahler, S. V., Vertes, R. P., & Allen, T. A. (2019). Prefrontal pathways provide top-down control of memory for sequences of events. Cell Reports, 28, 640–654.

    Article  CAS  PubMed  Google Scholar 

  • Jirikowic, T. L., McCoy, S. W., Lubetzky-Vilnai, A., Price, R., Ciol, M. A., Kartin, D., et al. (2013). Sensory control of balance: A comparison of children with fetal alcohol spectrum disorders to children with typical development. Journal of Population Therapeutics and Clinical Pharmacology.

  • Jones, K., & Smith, D. (1973). Recognition of the fetal alcohol syndrome in early infancy. Lancet, 302, 999–1001. https://doi.org/10.1016/S0140-6736(73)91092-1

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder, S. S., Shi, Q., Xu, H., & Gibson, G. E. (2007). Changes in inflammatory processes associated with selective vulnerability following mild impairment of oxidative metabolism. Neurobiology of Disease, 26, 353–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato, S., Fukabori, R., Nishizawa, K., Okada, K., Yoshioka, N., Sugawara, M., … Kobayashi, K. (2018). Action selection and flexible switching controlled by the intralaminar thalamic neurons. Cell Reports, 22, 2370–2382.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, S. J., & Lawrence, C. R. (2008). Intragastric intubation of alcohol during the perinatal period. Methods in Molecular Biology, 447, 101–110. https://doi.org/10.1007/978-1-59745-242-7_8

    Article  CAS  PubMed  Google Scholar 

  • Kempermann, G. (2019). Environmental enrichment, new neurons and the neurobiology of individuality. Nature Reviews. Neuroscience, 4, 235–245.

    Article  CAS  Google Scholar 

  • Klein, M. M., Cholvin, T., Cosquer, B., Salvadori, A., Le Mero, J., Kourouma, L., et al. (2019). Ventral midline thalamus lesion prevents persistence of new (learning-triggered) hippocampal spines, delayed neocortical spinogenesis, and spatial memory durability. Brain Structure & Function, 224, 1659–1676. https://doi.org/10.1007/s00429-019-01865-1

    Article  Google Scholar 

  • Klintsova, A. Y., Cowell, R. M., Swain, R. A., Napper, R. M., Goodlett, C. R., & Greenough, W. T. (1998). Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats: I. behavioral results. Brain Research, 800, 48–61. https://doi.org/10.1016/S0006-8993(98)00495-8

    Article  CAS  PubMed  Google Scholar 

  • Klintsova, A. Y., Hamilton, G. F., & Boschen, K. E. (2013). Long-term consequences of developmental alcohol exposure on brain structure and function: Therapeutic benefits of physical activity. Brain Sciences, 3(1), 1–38.

    Google Scholar 

  • Klintsova, A. Y., Scamra, C., Hoffman, M., Napper, R. M., Goodlett, C. R., & Greenough, W. T. (2002). Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats:: II. A quantitative stereological study of synaptic plasticity in female rat cerebellum. Brain Research, 937, 83–93. https://doi.org/10.1016/S0006-8993(02)02492-7

    Article  CAS  PubMed  Google Scholar 

  • Knierim, J. J., Kudrimoti, H. S., & McNaughton, B. L. (1995). Place cells, head direction cells, and the learning of landmark stability. The Journal of Neuroscience, 15, 1648–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koger, S. M., & Mair, R. G. (1994). Comparison of the effects of frontal cortical and thalamic lesions on measures of olfactory learning and memory in the rat. Behavioral Neuroscience, 108, 1088–1100.

    Article  CAS  PubMed  Google Scholar 

  • Kotkoskie, L. A., & Norton, S. (1989a). Cerebral cortical morphology and behavior in rats following acute prenatal ethanol exposure. Alcoholism, Clinical and Experimental Research, 13(6), 776–781.

    Article  CAS  PubMed  Google Scholar 

  • Kotkoskie, L. A., & Norton, S. (1989b). Morphometric analysis of developing rat cerebral cortex following acute prenatal ethanol exposure. Experimental Neurology, 106(3), 283–288.

    Article  CAS  PubMed  Google Scholar 

  • Krout, K. E., Belzer, R. E., & Loewy, A. D. (2002). Brainstem projections to midline and intralaminar thalamic nuclei of the rat. The Journal of Comparative Neurology, 448, 53–101.

    Article  PubMed  Google Scholar 

  • Kumar, A., Singh, C. K., LaVoie, H. A., DiPette, H. A., Singh, D. J., & Singh, U. S. (2011). Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol Spectrum disorders. Molecular Pharmacology, 80, 446–457. https://doi.org/10.1124/mol.111.071126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langlais, P. J., Mair, R. G., Anderson, C. D., & McEntee, W. J. (1988). Long-lasting changes in regional brain amino acids and monoamines in recovered pyrithiamine treated rats. Neurochemical Research, 13, 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  • Langlais, P. J., & Savage, L. M. (1995). Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behavioural Brain Research, 68, 75–89.

    Article  CAS  PubMed  Google Scholar 

  • Langlais, P. J., & Zhang, S. X. (1993). Extracellular glutamate is increased in thalamus during thiamine deficiency-induced lesions and is blocked by MK-801. Journal of Neurochemistry, 61, 2175–2182.

    Article  CAS  PubMed  Google Scholar 

  • Langlais, P. J., Zhang, S. X., & Savage, L. M. (1996). Neuropathology of thiamine deficiency: An update on the comparative analysis of human disorders and experimental models. Metabolic Brain Disease, 11, 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Lara-Vásquez, A., Espinosa, N., Durán, E., Stockle, M., & Fuentealba, P. (2016). Midline thalamic neurons are differentially engaged during hippocampus network oscillations. Scientific Reports, 6, 29807. https://doi.org/10.1038/srep29807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law, L. M., & Smith, D. M. (2012). The anterior thalamus is critical for overcoming interference in a context-dependent odor discrimination task. Behavioral Neuroscience, 126, 710–719.

    Article  PubMed  PubMed Central  Google Scholar 

  • Layfield, D. M., Patel, M., Hallock, H., & Griffin, A. L. (2015). Inactivation of the nucleus reuniens/rhomboid causes a delay-dependent impairment of spatial working memory. Neurobiology of Learning and Memory, 125, 163–167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebel, C., Rasmussen, C., Wyper, K., Walker, L., Andrew, G., & Yager, J. (2008). Brain diffusion abnormalities in children with fetal alcohol Spectrum disorder. Alcoholism, Clinical and Experimental Research, 32(10), 1732–1740. https://doi.org/10.1111/j.1530-0277.2008.00750.x

    Article  PubMed  Google Scholar 

  • Lee, M. H., & Rabe, A. (1999). Infantile handling eliminates reversal learning deficit in rats prenatally exposed to alcohol. Alcohol, 18(1), 49–53. https://doi.org/10.1016/S0741-8329(98)00067-6

    Article  CAS  PubMed  Google Scholar 

  • Light, K. E., Serbus, D. C., & Santiago, M. (1989). Exposure of rats to ethanol from postnatal days 4 to 8: Alterations of cholinergic neurochemistry in the cerebral cortex and Corpus striatum at day 20. Alcoholism, Clinical and Experimental Research, 13, 29–35. https://doi.org/10.1111/j.1530-0277.1989.tb00279.x

    Article  CAS  PubMed  Google Scholar 

  • Linley, S. B., Gallo, M. M., & Vertes, R. P. (2016). Lesions of the ventral midline thalamus produce deficits in reversal learning and attention on an odor texture set shifting task. Brain Research, 1649, 110–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski, R. J., Hammond, P., O’Leary-Moore, S. K., Ament, J. J., Pecevich, S. J., Jiang, Y., et al. (2012). Ethanol-induced face-brain Dysmorphology patterns are correlative and exposure-stage dependent. PLoS One, 7, e43067. https://doi.org/10.1371/journal.pone.0043067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez, J., Wolff, M., Lecourtier, L., Cosquer, B., Bontempi, B., Dalrymple-Alford, J., & Cassel, J. C. (2009). The intralaminar thalamic nuclei contribute to remote spatial memory. The Journal of Neuroscience, 29, 3302–3306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loukavenko, E. A., Ottley, M. C., Moran, J. P., Wolff, M., & Dalrymple-Alford, J. C. (2007). Towards therapy to relieve memory impairment after anterior thalamic lesions: Improved spatial working memory after immediate and delayed postoperative enrichment. The European Journal of Neuroscience, 26, 3267–3276.

    Article  PubMed  Google Scholar 

  • Loukavenko, E. A., Wolff, M., Poirier, G. L., & Dalrymple-Alford, J. C. (2016). Impaired spatial working memory after anterior thalamic lesions: Recovery with cerebrolysin and enrichment. Brain Structure & Function, 221, 1955–1970.

    Article  Google Scholar 

  • Lukoyanov, N.V., Pereira, P.A., Paula-Barbosa, M.M., Cadete-Leite, A. (2003). Nerve growth factor improves spatial learning and restores hippocampal cholinergic fibres in rats withdrawn from chronic treatment with ethanol. Experimental Brain Research, 148, 88–94.

  • Luo, J. (2015). Effects of ethanol on the cerebellum: Advances and prospects. Cerebellum, 14, 383–385. https://doi.org/10.1007/s12311-015-0674-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden, J. T., Thompson, S. M., Magcalas, C. M., Wagner, J. L., Hamilton, D. A., Savage, D. D., et al. (2020). Moderate prenatal alcohol exposure reduces parvalbumin expressing GABAergic interneurons in the dorsal hippocampus of adult male and female rat offspring. Neuroscience Letters, 718, 134700. https://doi.org/10.1016/J.NEULET.2019.134700

    Article  PubMed  Google Scholar 

  • Mair, R. G., Anderson, C. D., Langlais, P. J., & McEntee, W. J. (1985). Thiamine deficiency depletes cortical norepinephrine and impairs learning processes in the rat. Brain Research, 360, 273–284.

    Article  CAS  PubMed  Google Scholar 

  • Mair, R. G., Anderson, C. D., Langlais, P. J., & McEntee, W. J. (1988). Behavioral impairments, brain lesions and monoaminergic activity in the rat following recovery from a bout of thiamine deficiency. Behavioural Brain Research, 27, 223–239.

    Article  CAS  PubMed  Google Scholar 

  • Mair, R. G., Burk, J. A., & Porter, M. C. (1998). Lesions of the frontal cortex, hippocampus, and intralaminar thalamic nuclei have distinct effects on remembering in rats. Behavioral Neuroscience, 112, 772–792.

    Article  CAS  PubMed  Google Scholar 

  • Mair, R. G., Burk, J. A., & Porter, M. C. (2003). Impairment of radial armmaze delayed nonmatching after lesions of anterior thalamus and parahippocampal cortex. Behavioral Neuroscience, 117, 96–605.

    Article  Google Scholar 

  • Mair, R. G., Koch, J. K., Newman, J. B., Howard, J. R., & Burk, J. A. (2002). A double dissociation within striatum between serial reaction time and radial maze delayed nonmatching performance in rats. The Journal of Neuroscience, 22, 6756–6765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mair, R. G., Miller, R. L., Wormwood, B. A., Francoeur, M. J., Onos, K. D., & Gibson, B. M. (2015). The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination. Neuroscience and Biobehavioral Reviews, 54, 161–174.

    Article  PubMed  Google Scholar 

  • Maisson, D. J., Gemzik, Z. M., & Griffin, A. L. (2018). Optogenetic suppression of the nucleus reuniens selectively impairs encoding during spatial working memory. Neurobiology of Learning and Memory, 155, 78–85.

    Article  PubMed  Google Scholar 

  • Marchand, A., Faugère, A., Coutureau, E., & Wolff, M. (2014). A role for anterior thalamic nuclei in contextual fear memory. Brain Structure & Function, 219, 1575–1586.

    Article  CAS  Google Scholar 

  • Matsumoto, N., Minamimoto, T., Graybiel, A. M., & Kimura, M. (2001). Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. Journal of Neurophysiology, 85, 960–976.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, S. N., Rilep, E. P., Jernigan, T. L., Ehlers, C. L., Delis, D. C., Jones, K. L., … Bellugi, U. (1992). Fetal alcohol syndrome: A case report of neuropsychological, MRI, and EEG assessment of two children. Alcoholism, Clinical and Experimental Research, 16(5), 1001–1003. https://doi.org/10.1111/j.1530-0277.1992.tb01909.x

    Article  CAS  PubMed  Google Scholar 

  • Maynard, M. E., Barton, E. A., Robinson, C. R., Wooden, J. I., & Leasure, J. L. (2018). Sex differences in hippocampal damage, cognitive impairment, and trophic factor expression in an animal model of an alcohol use disorder. Brain Structure & Function, 223, 195–210.

    Article  CAS  Google Scholar 

  • McKenna, J. T., & Vertes, R. P. (2004). Afferent projections to nucleus reuniens of the thalamus. The Journal of Comparative Neurology, 480, 115–142.

    Article  PubMed  Google Scholar 

  • Mei, H., Logothetis, N. K., & Eschenko, O. (2018). The activity of thalamic nucleus reuniens is critical for memory retrieval, but not essential for the early phase of "off-line" consolidation. Learning & Memory, 25, 129–137.

    Article  CAS  Google Scholar 

  • Meintjes, E. M., Narr, K. L., van der Kouwe, A. J. W., Molteno, C. D., Pirnia, T., Gutman, B., … Jacobson, S. W. (2014). A tensor-based morphometry analysis of regional differences in brain volume in relation to prenatal alcohol exposure. Neuroimage Clin., 5, 152–160. https://doi.org/10.1016/j.nicl.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalick, S. M., Crandall, J. E., Langlois, J. C., Krienke, J. D., & Dube, W. V. (2001). Prenatal ethanol exposure, generalized learning impairment, and medial prefrontal cortical deficits in rats. Neurotoxicology and Teratology, 23(5), 453–462. https://doi.org/10.1016/S0892-0362(01)00168-4

    Article  CAS  PubMed  Google Scholar 

  • Minciacchi, D., & Granato, A. (1989). Development of the thalamocortical system: Transient-crossed projections to the frontal cortex in neonatal rats. Journal of Comparative Neurology, 281(1), 1–12. https://doi.org/10.1002/cne.902810102

    Article  CAS  Google Scholar 

  • Mohammed, A. H., Zhu, S. W., Darmopil, S., Hjerling-Leffler, J., Ernfors, P., Winblad, B., et al. (2002). Environmental enrichment and the brain. Progress in Brain Research, 138, 109–133. https://doi.org/10.1016/S0079-6123(02)38074-9

    Article  CAS  PubMed  Google Scholar 

  • Mooney, S. M., & Miller, M. W. (2001). Effects of prenatal exposure to ethanol on the expression of bcl-2, bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Research, 911, 71–81. https://doi.org/10.1016/S0006-8993(01)02718-4

    Article  CAS  PubMed  Google Scholar 

  • Mooney, S. M., & Miller, M. W. (2010). Prenatal exposure to ethanol affects postnatal neurogenesis in thalamus. Experimental Neurology, 223, 566–573. https://doi.org/10.1016/J.EXPNEUROL.2010.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton, R. A., Diaz, M. R., Topper, L. A., & Valenzuela, C. F. (2014). Construction of vapor chambers used to expose mice to alcohol during the equivalent of all three trimesters of human development. JoVE, e51839. https://doi.org/10.3791/51839

  • Moser, M. B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor Perspectives in Biology, 7(2), a021808.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagahara, A. H., & Handa, R. J. (1997). Fetal alcohol exposure produces delay-dependent memory deficits in juvenile and adult rats. Alcoholism: Clinical and Experimental Research, 21(4), 710–715. https://doi.org/10.1111/j.1530-0277.1997.tb03826.x

    Article  CAS  Google Scholar 

  • Nardelli, A., Lebel, C., Rasmussen, C., Andrew, G., & Beaulieu, C. (2011). Extensive deep gray matter volume reductions in children and adolescents with fetal alcohol Spectrum disorders. Alcoholism, Clinical and Experimental Research, 35(8), 1404–1417. https://doi.org/10.1111/j.1530-0277.2011.01476.x

    Article  CAS  PubMed  Google Scholar 

  • Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Research, 726, 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, A. J. D., Powell, A. L., Kinnavane, L., & Aggleton, J. P. (2018). Anterior thalamic nuclei, but not retrosplenial cortex, lesions abolish latent inhibition in rats. Behavioral Neuroscience, 132, 378–387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Newville, J., Valenzuela, C.F., Li, L., Jantzie, L.L., Cunningham, L.A. (2013). Acute oligodendrocyte loss with persistent white matter injury in a third trimester equivalent mouse model of fetal alcohol spectrum disorder. Glia, 65, 1317–1332.

  • Nunes, P. T., Gómez-Mendoza, D. P., Rezende, C. P., Figueiredo, H. C. P., & Ribeiro, A. M. (2018). Thalamic proteome changes and behavioral impairments in thiamine-deficient rats. Neurosci., 385, 181–197.

    Article  CAS  Google Scholar 

  • Nunes, P. T., Kipp, B. T., Reitz, N. L., & Savage, L. M. (2019). Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. International Review of Neurobiology, 148, 101–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Callaghan, R. M., Ohle, R., & Kelly, A. M. (2007). The effects of forced exercise on hippocampal plasticity in the rat: A comparison of LTP, spatial- and non-spatial learning. Behavioural Brain Research, 176, 362–366.

    Article  PubMed  Google Scholar 

  • Olson, A. K., Eadie, B. D., Ernst, C., & Christie, B. R. (2006). Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus, 16, 250–260. https://doi.org/10.1002/hipo.20157

    Article  CAS  PubMed  Google Scholar 

  • Otero, N. K. H., Thomas, J. D., Saski, C. A., Xia, X., & Kelly, S. J. (2012). Choline supplementation and DNA methylation in the Hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcoholism, Clinical and Experimental Research, 36, 1701–1709. https://doi.org/10.1111/j.1530-0277.2012.01784.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, P.A., Rocha, J.P., Cardoso, A., Vilela, M., Sousa, S., Madeira, M.D. (2016). Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus. Neurotoxicology, 54 153–160.

  • Parent, A., Mackey, A., & De Bellefeuille, L. (1983). The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study. Neurosci., 10, 1137–1150.

    Article  CAS  Google Scholar 

  • Perkins, A. E., Fadel, J. R., & Kelly, S. J. (2015). The effects of postnatal alcohol exposure and galantamine on the context pre-exposure facilitation effect and acetylcholine efflux using invivo microdialysis. Alcohol, 49, 193–205. https://doi.org/10.1016/j.alcohol.2015.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, B. A. L., & Mitchell, A. S. (2019). Considering the evidence for anterior and laterodorsal thalamic nuclei as higher order relays to cortex. Frontiers in Molecular Neuroscience, 12, 167. https://doi.org/10.3389/fnmol.2019.00167

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrelli, B., Weinberg, J., & Hicks, G. G. (2018). Effects of prenatal alcohol exposure (PAE): Insights into FASD using mouse models of PAE. Biochemistry and Cell Biology, 69(2), 131–147. https://doi.org/10.1139/bcb-2017-0280

    Article  CAS  Google Scholar 

  • Pitel, A. L., Chételat, G., Le Berre, A. P., Desgranges, B., Eustache, F., & Beaunieux, H. (2012). Macrostructural abnormalities in Korsakoff syndrome compared with uncomplicated alcoholism. Neurology., 78, 1330–1333.

    Article  PubMed  Google Scholar 

  • Pitel, A. L., Segobin, S. H., Ritz, L., Eustache, F., & Beaunieux, H. (2015). Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction. Neuroscience and Biobehavioral Reviews, 54, 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Preston-Ferrer, P., Coletta, S., Frey, M., & Burgalossi, A. (2016). Anatomical organization of presubicular head-direction circuits. Elife, e14592. https://doi.org/10.7554/eLife.14592

  • Rema, V., & Ebner, F. F. (1999). Effect of enriched environment rearing on impairments in cortical excitability and plasticity after prenatal alcohol exposure. The Journal of Neuroscience, 19, 10993–11006. https://doi.org/10.1523/jneurosci.19-24-10993.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, D., & Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental Health Perspectives, 108(Suppl 3), 511–533.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley, E. P., Barron, S., Driscoll, C. D., & Hamlin, R. T. (1986). The effects of Physostigmine on open-field behavior in rats exposed to alcohol prenatally. Alcoholism: Clinical and Experimental Research, 10(1), 50–53. https://doi.org/10.1111/j.1530-0277.1986.tb05613.x

    Article  CAS  Google Scholar 

  • Robinson, J. K., & Mair, R. G. (1992). MK-801 prevents brain lesions and delayed-nonmatching-to-sample deficits produced by pyrithiamine-induced encephalopathy in rats. Behavioral Neuroscience, 106, 623–633.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, C. I., Davies, S., Calhoun, V., Savage, D. D., & Hamilton, D. A. (2016). Moderate prenatal alcohol exposure alters functional connectivity in the adult rat brain. Alcoholism, Clinical and Experimental Research, 40, 2134–2146. https://doi.org/10.1111/acer.13175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roland, J. J., Levinson, M., Vetreno, R. P., & Savage, L. M. (2010). Differential effects of systemic and intraseptal administration of the acetylcholinesterase inhibitor tacrine on the recovery of spatial behavior in an animal model of diencephalic amnesia. European Journal of Pharmacology, 629, 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Roland, J. J., Mark, K., Vetreno, R. P., & Savage, L. M. (2008). Increasing hippocampal acetylcholine levels enhance behavioral performance in an animal model of diencephalic amnesia. Brain Research, 1234, 116–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, A., Svensson, F. P., Mazeh, A., & Kocsis, B. (2017). Prefrontal-hippocampal coupling by theta rhythm and by 2-5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Structure & Function, 222, 2819–2830.

    Article  Google Scholar 

  • Saalmann, Y. B. (2014). Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Frontiers in Systems Neuroscience, 8, 83. https://doi.org/10.3389/fnsys.2014.00083

    Article  PubMed  PubMed Central  Google Scholar 

  • Santarelli, M., Granato, A., Sbriccoli, A., Gobbi, G., Janiri, L., & Minciacchi, D. (1995). Alterations of the thalamo-cortical system in rats prenatally exposed to ethanol are prevented by concurrent administration of acetyl- l-carnitine. Brain Research, 698(1), 241–247. https://doi.org/10.1016/0006-8993(95)00997-5

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S., Liachenko, S., Paule, M. G., Bowyer, J., & Hanig, J. P. (2016). Brain endothelial dysfunction following pyrithiamine induced thiamine deficiency in the rat. Neurotox., 57, 298–309.

    Article  CAS  Google Scholar 

  • Savage, L. M., Castillo, R., & Langlais, P. J. (1998). Effects of lesions of thalamic intralaminar and midline nuclei and internal medullary lamina on spatial memory and object discrimination. Behavioral Neuroscience, 112, 1339–1352.

    Article  CAS  PubMed  Google Scholar 

  • Savage, L. M., Hall, J., & Resende, L. S. (2012). Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery. Neuropsychology Review, 22, 195–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Savage, L.M., Roland, J., Klintsova, A. (2007). Selective septohippocampal-but not forebrain amygdalar-cholinergic dysfunction in diencephalic amnesia. Brain Research, 1139, 210–219.

  • Savage, L. M., Hall, J. M., & Vetreno, R. P. (2011). Anterior thalamic lesions alter both hippocampal-dependent behavior and hippocampal acetylcholine release in the rat. Learning & Memory, 18, 751–758.

    Article  CAS  Google Scholar 

  • Savage, L. M., Sweet, A. J., Castillo, R., & Langlais, P. J. (1997). The effects of lesions to thalamic lateral internal medullary lamina and posterior nuclei on learning, memory and habituation in the rat. Behavioural Brain Research, 82, 133–147.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, R. D., & Thomas, J. D. (2016). Adolescent choline supplementation attenuates working memory deficits in rats exposed to alcohol during the third trimester equivalent. Alcoholism, Clinical and Experimental Research, 40, 897–905. https://doi.org/10.1111/acer.13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber, W. B., St. Cyr, S. A., Jablonski, S. A., Hunt, P. S., Klintsova, A. Y., & Stanton, M. E. (2013). Effects of exercise and environmental complexity on deficits in trace and contextual fear conditioning produced by neonatal alcohol exposure in rats. Developmental Psychobiology, 55, 483–495. https://doi.org/10.1002/dev.21052

    Article  CAS  PubMed  Google Scholar 

  • Segobin, S., Laniepce, A., Ritz, L., Lannuzel, C., Boudehent, C., Cabé, N., … Pitel, A. L. (2019). Dissociating thalamic alterations in alcohol use disorder defines specificity of Korsakoff's syndrome. Brain., 142, 1458–1470.

    Article  PubMed  Google Scholar 

  • Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106-107, 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001

    Article  PubMed  Google Scholar 

  • Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19, 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (1996). Functional organization of thalamocortical relays. Journal of Neurophysiology, 76, 1367–1395.

    Article  CAS  PubMed  Google Scholar 

  • Sidibé, M., Bevan, M. D., Bolam, J. P., & Smith, Y. (1997). Efferent connections of the internal globus pallidus in the squirrel monkey: I. topography and synaptic organization of the pallidothalamic projection. The Journal of Comparative Neurology, 382, 323–347.

    Article  PubMed  Google Scholar 

  • Stanton, M. E., & Goodlett, C. R. (1998). Neonatal ethanol exposure impairs eyeblink conditioning in weanling rats. Alcoholism, Clinical and Experimental Research, 22, 270–275. https://doi.org/10.1111/j.1530-0277.1998.tb03649.x

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, E. V., & Pfefferbaum, A. (2008). Neuroimaging of the Wernicke-Korsakoff syndrome. Alcohol and Alcoholism, 44, 155–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sziklas, V., & Petrides, M. (1999). The effects of lesions to the anterior thalamic nuclei on object-place associations in rats. The European Journal of Neuroscience, 11, 559–566.

    Article  CAS  PubMed  Google Scholar 

  • Taggart, T. C., Simmons, R. W., Thomas, J. D., & Riley, E. P. (2017). Children with heavy prenatal alcohol exposure exhibit atypical gait characteristics. Alcoholism, Clinical and Experimental Research, 41, 1648–1655. https://doi.org/10.1111/acer.13450

    Article  PubMed  PubMed Central  Google Scholar 

  • Taube, J. S. (2007). The head direction signal: Origins and sensory-motor integration. Annual Review of Neuroscience, 30, 181–207.

    Article  CAS  PubMed  Google Scholar 

  • Terasaki, L. S., & Schwarz, J. M. (2016). Effects of moderate prenatal alcohol exposure during early gestation in rats on inflammation across the maternal-fetal-immune Interface and later-life immune function in the offspring. Journal of Neuroimmune Pharmacology, 11, 680–692. https://doi.org/10.1007/s11481-016-9691-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas, J., Wasserman, E., West, J., & Goodlett, C. (1996). Behavioral deficits induced by bingelike exposure to alcohol in neonatal rats: Importance of developmental timing and number of episodes. Developmental Psychobiology, 29(5), 433–452.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. D., Garcia, G. G., Dominguez, H. D., & Riley, E. P. (2004). Administration of eliprodil during ethanol withdrawal in the neonatal rat attenuates ethanol-induced learning deficits. Psychopharmacology, 175, 189–195. https://doi.org/10.1007/s00213-004-1806-x

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. D., Goodlett, C. R., & West, J. R. (1998). Alcohol-induced Purkinje cell loss depends on developmental timing of alcohol exposure and correlates with motor performance. Developmental Brain Research, 105, 159–166. https://doi.org/10.1016/S0165-3806(97)00164-8

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. D., Sather, T. M., & Whinery, L. A. (2008). Voluntary exercise influences behavioral development in rats exposed to alcohol during the neonatal brain growth spurt. Behavioral Neuroscience, 122, 1264–1273. https://doi.org/10.1037/a0013271

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari, V., & Chopra, K. (2011). Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signaling and cell death cascade in neonatal rat brain. Journal of Neurochemistry, 117, 678–690. https://doi.org/10.1111/j.1471-4159.2011.07236.x

    Article  CAS  PubMed  Google Scholar 

  • Todd, K. G., & Butterworth, R. F. (1998). Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Experimental Neurology, 149, 130–138.

    Article  CAS  PubMed  Google Scholar 

  • Toledo Nunes, P., Vedder, L. C., Deak, T., & Savage, L. M. (2019). A pivotal role for thiamine deficiency in the expression of Neuroinflammation markers in models of alcohol-related brain damage. Alcoholism, Clinical and Experimental Research, 43, 425–438.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, D., Wilce, P., & Bedi, K. (1998). Spatial learning ability of rats following differing levels of exposure to alcohol during early postnatal life. Physiology & Behavior, 63, 205–211. https://doi.org/10.1016/S0031-9384(97)00424-1

    Article  CAS  Google Scholar 

  • Tong, L., Prieto, G. A., Kramar, E. A., Smith, E. D., Cribbs, D. H., Lynch, G., & Cotman, C. W. (2012). Brain-derived Neurotrophic factor-dependent synaptic plasticity is suppressed by Interleukin-1 via p38 mitogen-activated protein kinase. The Journal of Neuroscience, 32, 17714–17724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treit, S., Lebel, C., Baugh, L., Rasmussen, C., Andrew, G., & Beaulieu, C. (2013). Longitudinal MRI reveals altered trajectory of brain development during childhood and adolescence in fetal alcohol Spectrum disorders. The Journal of Neuroscience, 33(24), 10098–10109. https://doi.org/10.1523/JNEUROSCI.5004-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsanov, M., Chah, E., Vann, S. D., Reilly, R. B., Erichsen, J. T., Aggleton, J. P., & O'Mara, S. M. (2011). Theta-modulated head direction cells in the rat anterior thalamus. The Journal of Neuroscience, 31, 9489–9502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich, K., Spriggs, M. J., Abraham, W. C., Dalrymple-Alford, J. C., & McNaughton, N. (2019). Environmental enrichment increases prefrontal EEG power and synchrony with the hippocampus in rats with anterior thalamus lesions. Hippo., 29, 128–140.

    Article  Google Scholar 

  • Uylings, H. B. M., Kuypers, K., Diamond, M. C., & Veltman, W. A. M. (1978). Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats. Experimental Neurology, 62, 658–677. https://doi.org/10.1016/0014-4886(78)90276-5

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela, C. F., Morton, R. A., Diaz, M. R., & Topper, L. (2012). Does moderate drinking harm the fetal brain? Insights from animal models. Trends in Neurosciences, 35, 284–292. https://doi.org/10.1016/J.TINS.2012.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Werf, Y. D., Witter, M. P., & Groenewegen, H. J. (2002). The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Research. Brain Research Reviews, 39, 107–140.

    Article  PubMed  Google Scholar 

  • van Eden, C., Kros, J., & Uyling, H. B. (1990). The development of the rat prefrontal cortex. Its size and development of connections with thalamus, spinal cord and other cortical areas. Progress in Brain Research, 85, 169–183.

    Article  PubMed  Google Scholar 

  • van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neurosciences, 32, 283–290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews. Neuroscience, 1, 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Vann, S. D., Brown, M. W., & Aggleton, J. P. (2000). Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience, 101, 983–991.

    Article  CAS  PubMed  Google Scholar 

  • Varela, C. (2014). Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits., 8, 69. https://doi.org/10.3389/fncir.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela, C., Kumar, S., Yang, J. Y., & Wilson, M. A. (2014). Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Structure & Function, 219, 911–929.

    Article  CAS  Google Scholar 

  • Vaynman, S., Ying, Z., & Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. The European Journal of Neuroscience, 20, 2580–2590.

    Article  PubMed  Google Scholar 

  • Vedder, L. C., Hall, J. M., Jabrouin, K. R., & Savage, L. M. (2015). Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory, and cognitive flexibility. Alcoholism, Clinical and Experimental Research, 39, 2143–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vemuganti, R., Kalluri, H., Yi, J. H., Bowen, K. K., & Hazell, A. S. (2006). Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism and structural damage in thiamine deficiency. The European Journal of Neuroscience, 23, 1172–1188.

    Article  PubMed  Google Scholar 

  • Vertes, R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neurosci., 142, 1–20.

    Article  CAS  Google Scholar 

  • Vertes, R. P., Albo, Z., & Viana Di Prisco, G. (2001). Theta-rhythmically firing neurons in the anterior thalamus: Implications for mnemonic functions of Papez's circuit. Neurosci, 104, 619–625.

    Article  CAS  Google Scholar 

  • Vertes, R. P., Hoover, W. B., Do Valle, A. C., Sherman, A., & Rodriguez, J. J. (2006). Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. The Journal of Comparative Neurology, 499, 768–796.

    Article  PubMed  Google Scholar 

  • Vertes, R. P., Linley, S. B., Groenewegen, H. J., & Witter, M. P. (2015). Thalamus. In G. Paxinos (Ed.), The rat nervous system (4th ed.). Cambridge: Academic Press.

    Google Scholar 

  • Vertes, R. P., Linley, S. B., & Hoover, W. B. (2015). Limbic circuitry of the midline thalamus. Neuroscience and Biobehavioral Reviews, 54, 89–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetreno, R. P., Bohnsack, J. P., Kusumo, H., Liu, W., Pandey, S. C., & Crews, F. T. (2019). Neuroimmune and epigenetic involvement in adolescent binge ethanol-induced loss of basal forebrain cholinergic neurons: Restoration with voluntary exercise. Addiction Biology. https://doi.org/10.1111/adb.12731

  • Vetreno, R. P., & Crews, F. T. (2018). Adolescent binge ethanol-induced loss of basal forebrain cholinergic neurons and neuroimmune activation are prevented by exercise and indomethacin. PLoS One, 13, e0204500. https://doi.org/10.1371/journal.pone.0204500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetreno, R. P., Hall, J. M., & Savage, L. M. (2011). Alcohol-related amnesia and dementia: Animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiology of Learning and Memory, 96, 596–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victor M, Adams RD, Collins GH. (1971). The Wernicke-Korsakoff syndrome Philadelphia: F.A. Davis Co.

  • Vivar, C., Potter, M. C., & van Praag, H. (2012). All about running: Synaptic plasticity, growth factors and adult hippocampal neurogenesis. Neurogenesis and Neural Plasticity, 15, 189–210.

    Article  CAS  Google Scholar 

  • Vivar, C., & van Praag, H. (2017). Running changes the brain: The long and the short of it. Physiology, 32, 410–424. https://doi.org/10.1152/physiol.00017.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voss, M. W., Vivar, C., Kramer, A. F., & van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17, 525–544. https://doi.org/10.1016/J.TICS.2013.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  • West, J. R., Hamre, K. M., & Pierce, D. R. (1984). Delay in brain growth induced by alcohol in artificially reared rat pups. Alcohol, 1, 213–222. https://doi.org/10.1016/0741-8329(84)90101-0

    Article  CAS  PubMed  Google Scholar 

  • Whitcher, L. T., & Klintsova, A. Y. (2008). Postnatal binge-like alcohol exposure reduces spine density without affecting dendritic morphology in rat mPFC. Synapse, 62, 566–573. https://doi.org/10.1002/syn.20532

    Article  CAS  PubMed  Google Scholar 

  • White, L. D., & Barone Jr., S. (2001). Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death and Differentiation, 8, 345. https://doi.org/10.1038/sj.cdd.4400816

    Article  CAS  PubMed  Google Scholar 

  • Winter, S. S., Clark, B. J., & Taube, J. S. (2015). Spatial navigation. Disruption of the head direction cell network impairs the parahippocampal grid cell signal. Science, 347, 870–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff, M., Loukavenko, E. A., Will, B. E., & Dalrymple-Alford, J. C. (2008). The extended hippocampal-diencephalic memory system: Enriched housing promotes recovery of the flexible use of spatial representations after anterior thalamic lesions. Hippo., 18, 996–1007.

    Article  Google Scholar 

  • Wolff, M., & Vann, S. D. (2019). The cognitive thalamus as a gateway to mental representations. The Journal of Neuroscience, 39, 3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wouterlood, F. G., Saldana, E., & Witter, M. P. (1990). Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris-leucoagglutinin. The Journal of Comparative Neurology, 296, 179–203.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak, D. F., Hartman, R. E., Boyle, M. P., Vogt, S. K., Brooks, A. R., Tenkova, T., … Muglia, L. J. (2004). Apoptotic neurodegeneration induced by ethanol in neonatal mice is associated with profound learning/memory deficits in juveniles followed by progressive functional recovery in adults. Neurobiology of Disease, 17, 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Wozniak, J. R., Fuglestad, A. J., Eckerle, J. K., Fink, B. A., Hoecker, H. L., Boys, C. J., et al. (2015). Choline supplementation in children with fetal alcohol spectrum disorders: A randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition, 102, 1113–1125. https://doi.org/10.3945/ajcn.114.099168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak, J. R., & Muetzel, R. L. (2011). What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders? Neuropsychology Review, 21, 133–147. https://doi.org/10.1007/s11065-011-9162-1

    Article  PubMed  Google Scholar 

  • Xu, W., Südhof, TC. (2013). A neural circuit for memory specificity and generalization. Science, 339, 1290–1295.

  • Xu, L., Yang, Y., Gao, L., Zhao, J., Cai, Y., Huang, J., et al. (2015). Protective effects of resveratrol on the inhibition of hippocampal neurogenesis induced by ethanol during early postnatal life. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1852, 1298–1310. https://doi.org/10.1016/J.BBADIS.2015.03.009

    Article  CAS  Google Scholar 

  • Yasukawa, T., Kita, T., Xue, Y., & Kita, H. (2004). Rat intralaminar thalamic nuclei projections to the globus pallidus: A biotinylated dextran amine anterograde tracing study. The Journal of Comparative Neurology, 471, 153–167.

    Article  CAS  PubMed  Google Scholar 

  • Zeisel, S. H. (2011). What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders. Molecular Neurobiology, 44, 185–191. https://doi.org/10.1007/s12035-011-8165-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S. X., Weilersbacher, G. S., Henderson, S. W., Corso, T., Olney, J. W., & Langlais, P. J. (1995). Excitotoxic cytopathology, progression, and reversibility of thiamine deficiency-induced diencephalic lesions. Journal of Neuropathology and Experimental Neurology, 54, 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Burk, J. A., Glode, B. M., & Mair, R. G. (1998). Effects of thalamic and olfactory cortical lesions on continuous olfactory delayed nonmatching-to-sample and olfactory discrimination in rats (Rattus norvegicus). Behavioral Neuroscience, 112, 39–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by NIH grant numbers R21AA026613 and R01AA027269 to A.Y.K., and P50AA017823-Main 2 and R01AA021775 to L.M.S. and the Developmental Exposure Alcohol Research Center at Binghamton University.

Funding

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the above stated funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Savage.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savage, L.M., Nunes, P.T., Gursky, Z.H. et al. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 31, 447–471 (2021). https://doi.org/10.1007/s11065-020-09450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-020-09450-8

Keywords

Navigation