Skip to main content

Advertisement

Log in

SIRT2 Plays Significant Roles in Lipopolysaccharides-Induced Neuroinflammation and Brain Injury in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Several recent studies have suggested seemingly contrasting roles of SIRT2 in inflammation: Our previous cell culture study has indicated that SIRT2 siRNA-produced decrease in SIRT2 levels can lead to significant inhibition of lipopolysaccharides (LPS)-induced activation of BV2 microglia, suggesting that SIRT2 is required for LPS-induced microglial activation. In contrast, some studies have suggested that SIRT2 deficiency can lead to increased inflammation. In our current study, we used a mouse model of neuroinflammation to determine the roles of SIRT2 in LPS-induced inflammation. We found that administration of SIRT2 inhibitor AGK2 can significantly decrease LPS-induced increases in CD11b signals and the mRNA of TNF-α and IL-6. We further found that AGK2 can block LPS-induced nuclear translocation of NFκB. In addition, our study has shown that AGK2 can decrease not only LPS-induced increase in TUNEL signals—a marker of apoptosis-like damage, but also LPS-induced increases in the levels of active Caspase-3 and Bax. Collectively, our current in vivo study, together with our previous cell culture study, has suggested that SIRT2 is required for LPS-induced neuroinflammation and brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14:1021–1026

    CAS  PubMed  Google Scholar 

  2. Herskovits AZ, Guarente L (2013) Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 23:746–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall JA, Dominy JE, Lee Y, Puigserver P (2013) The sirtuin family’s role in aging and age-associated pathologies. J Clin Invest 123:973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo Y-S, Viswanathan M, Schoonjans K (2013) The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nogueiras R, Habegger KM, Chaudhary N, Finan B, Banks AS, Dietrich MO, Horvath TL, Sinclair DA, Pfluger PT, Tschöp MH (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiol Rev 92:1479–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eskandarian HA, Impens F, Nahori M-A, Soubigou G, Coppée J-Y, Cossart P, Hamon MA (2013) A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:1238858

    Article  PubMed  Google Scholar 

  7. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    Article  CAS  PubMed  Google Scholar 

  8. Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5:344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Krey L, Luhder F, Kusch K, Czech-Zechmeister B, Konnecke B, Outeiro TF, Trendelenburg G (2015) Knockout of silent information regulator 2 (SIRT2) preserves neurological function after experimental stroke in mice. J Cereb Blood Flow metab 35:2080–2088

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Arun A, Ellis L, Peritore C, Donmez G (2014) SIRT2 enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci 6:184

    PubMed  PubMed Central  Google Scholar 

  11. Outeiro TFKE, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519

    Article  CAS  PubMed  Google Scholar 

  12. Chopra V, Quinti L, Kim J, Vollor L, Narayanan KL, Edgerly C, Cipicchio PM, Lauver MA, Choi SH, Silverman RB, Ferrante RJ, Hersch S, Kazantsev AG (2012) The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep 2:1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao J, Mou Y, Bernstock JD, Klimanis D, Wang S, Spatz M, Maric D, Johnson K, Klinman DM, Li X, Li X, Hallenbeck JM (2015) Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS One 10:e0140772

    Article  PubMed  PubMed Central  Google Scholar 

  14. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases. Mol Neurodegener 4:1–13

    Article  Google Scholar 

  15. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  16. Chen H, Wu D, Ding X, Ying W (2015) SIRT2 is required for lipopolysaccharide-induced activation of BV2 microglia. NeuroReport 26:88–93

    Article  CAS  PubMed  Google Scholar 

  17. Pais TF, Szego EM, Marques O, Miller-Fleming L, Antas P, Guerreiro P, de Oliveira RM, Kasapoglu B, Outeiro TF (2013) The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. EMBO J 32:2603–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan F, Xu ZM, Lu LY, Nie H, Ding J, Ying WH, Tian HL (2016) SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-kappaB p65 acetylation and activation. J Neurochem 136:581–593

    Article  CAS  PubMed  Google Scholar 

  19. Hanslick JL, Lau K, Noguchi KK, Olney JW, Zorumski CF, Mennerick S, Farber NB (2009) Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis 34:1–10

    Article  CAS  PubMed  Google Scholar 

  20. Ma Y, Jiang J, Wang L, Nie H, Xia W, Liu J, Ying W (2012) CD38 is a key enzyme for the survival of mouse microglial BV2 cells. Biochem Biophys Res Commun 418:714–719

    Article  CAS  PubMed  Google Scholar 

  21. Wang B, Ma Y, Kong X, Ding X, Gu H, Chu T, Ying W (2014) NAD+ administration decreases doxorubicin-induced liver damage of mice by enhancing antioxidation capacity and decreasing DNA damage. Chem Biol Interact 212:65–71

    Article  CAS  PubMed  Google Scholar 

  22. Ma Y, Cao W, Wang L, Jiang J, Nie H, Wang B, Wei X, Ying W (2014) Basal CD38/cyclic ADP-ribose-dependent signaling mediates ATP release and survival of microglia by modulating connexin 43 hemichannels. Glia 62:943–955

    Article  PubMed  Google Scholar 

  23. Han ZY, Shen FX, He Y, Degos V, Camus M, Maze M, Young WL, Su H (2014) Activation of alpha-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS One 9:e105711

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Zhang T, Yu H, Shen H, Xia W (2014) Adjudin protects against cerebral ischemia reperfusion injury by inhibition of neuroinflammation and blood-brain barrier disruption. J Neuroinflammation 11:107

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tanaka S, Ishii A, Ohtaki H, Shioda S, Yoshida T, Numazawa S (2013) Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation 10:143

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kuwabara Y, Yokoyama A, Yang L, Toku K, Mori K, Takeda I, Shigekawa T, Zhang B, Maeda N, Sakanaka M, Tanaka J (2003) Two populations of microglial cells isolated from rat primary mixed glial cultures. J Neurosci Res 73:22–30

    Article  CAS  PubMed  Google Scholar 

  27. Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  28. Boche D, Perry V, Nicoll J (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  CAS  PubMed  Google Scholar 

  29. Giridharan VV, Thandavarayan RA, Arumugam S, Mizuno M, Nawa H, Suzuki K, Ko KM, Krishnamurthy P, Watanabe K, Konishi T (2015) Schisandrin B ameliorates ICV-infused amyloid beta induced oxidative stress and neuronal dysfunction through inhibiting RAGE/NF-kappaB/MAPK and up-regulating HSP/Beclin expression. PLoS One 10:e0142483

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li W, Chen Z, Yan M, He P, Chen Z, Dai H (2016) The protective role of Isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen glucose deprivation. J Neurochem 136:651–659

    Article  CAS  PubMed  Google Scholar 

  31. Michelucci A, Bithell A, Burney MJ, Johnston CE, Wong K-Y, Teng S-W, Desai J, Gumbleton N, Anderson G, Stanton LW, Williams BP, Buckley NJ (2015) The neurogenic potential of astrocytes is regulated by inflammatory signals. Mol Neurobiol. doi:10.1007/s12035-015-9296-x

  32. Buckley SM, Delhove JM, Perocheau DP, Karda R, Rahim AA, Howe SJ, Ward NJ, Birrell MA, Belvisi MG, Arbuthnot P, Johnson MR, Waddington SN, McKay TR (2015) In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci Rep 5:11842

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fernandes A, Miller-Fleming L, Pais TF (2014) Microglia and inflammation: conspiracy, controversy or control? CMLS 71:3969–3985

    Article  CAS  PubMed  Google Scholar 

  34. Satoh A, S-i Imai (2014) Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun 5:4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maxwell MM, Tomkinson EM, Nobles J, Wizeman JW, Amore AM, Quinti L, Chopra V, Hersch SM, Kazantsev AG (2011) The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet 20:3986–3996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki K, Koike T (2007) Mammalian Sir2-related protein (SIRT) 2–mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience 147:599–612

    Article  CAS  PubMed  Google Scholar 

  38. Yu TT, McIntyre JC, Bose SC, Hardin D, Owen MC, McClintock TS (2005) Differentially expressed transcripts from phenotypically identified olfactory sensory neurons. J Comp Neurol 483:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Möbius W (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27:7717–7730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Southwood CM, Peppi M, Dryden S, Tainsky MA, Gow A (2007) Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem Res 32:187–195

    Article  CAS  PubMed  Google Scholar 

  41. Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C, Guo J, Ling EA, Liang F (2007) Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci 27:2606–2616

    Article  PubMed  Google Scholar 

  42. Xiao C, Ghosh S (2005) NF-kappaB, an evolutionarily conserved mediator of immune and inflammatory responses. Adv Exp Med Biol 560:41–45

    Article  CAS  PubMed  Google Scholar 

  43. Trapecar M, Goropevsek A, Gorenjak M, Gradisnik L, Rupnik MS (2014) A co-culture model of the developing small intestine offers new insight in the early immunomodulation of enterocytes and macrophages by Lactobacillus spp. through STAT1 and NF-kB p65 translocation. PLoS One 9:e86297

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sangiovanni E, Vrhovsek U, Rossoni G, Colombo E, Brunelli C, Brembati L, Trivulzio S, Gasperotti M, Mattivi F, Bosisio E (2013) Ellagitannins from Rubus berries for the control of gastric inflammation: in vitro and in vivo studies. PLoS One 8:e71762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farruggia C, Yang Y, Kim B, Pham T, Bae M, Park Y-K, Lee J-Y (2015) Astaxanthin plays anti-inflammatory and antioxidant effects by inhibiting NFkB nuclear translocation and NOX2 expression in macrophages. FASEB J 29(603):608

    Google Scholar 

  46. Shao J, Liu T, Xie QR, Zhang T, Yu H, Wang B, Ying W, Mruk DD, Silvestrini B, Cheng CY, Xia W (2013) Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation. J Neuroimmunol 254:83–90

    Article  CAS  PubMed  Google Scholar 

  47. Lee AS, Jung YJ, Kim D, Nguyen-Thanh T, Kang KP, Lee S, Park SK, Kim W (2014) SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages. Biochem Biophys Res Commun 450:1363–1369

    Article  CAS  PubMed  Google Scholar 

  48. Lo U, Selvaraj V, Plane J, Chechneva O, Otsu K, Deng W (2014) p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Sci Rep 4:7405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VMY (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murray CL, Skelly DT, Cunningham C (2011) Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1beta and IL-6. J Neuroinflammation 8:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiang Y, Chen L, Liu H, Liu X, Wei X, Sun B, Wang T, Zhang X (2013) Inhibition of sPLA (2)-IIA prevents LPS-induced neuroinflammation by suppressing ERK1/2-cPLA (2) alpha pathway in mice cerebral cortex. PLoS One 8:e77909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grin’kina NM, Karnabi EE, Damania D, Wadgaonkar S, Muslimov IA, Wadgaonkar R (2012) Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 7:e36475

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Matsumori H, Nakayama Y, Osaki M, Kojima H, Kurimasa A, Ito H, Mori S, Katoh M, Oshimura M, Inoue T (2011) SIRT2 down-regulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells 16:34–45

    Article  CAS  PubMed  Google Scholar 

  54. He X, Nie H, Hong Y, Sheng C, Xia W, Ying W (2012) SIRT2 activity is required for the survival of C6 glioma cells. Biochem Biophys Res Commun 417:468–472

    Article  CAS  PubMed  Google Scholar 

  55. Lynn EG, McLeod CJ, Gordon JP, Bao JJ, Sack MN (2008) SIRT2 is a negative regulator of anoxia-reoxygenation tolerance via regulation of 14-3-3 zeta and BAD in H9c2 cells. FEBS Lett 582:2857–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kurauchi Y, Hisatsune A, Isohama Y, Mishima S, Katsuki H (2012) Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br J Pharmacol 166:1151–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by Chinese National Natural Science Foundation Grants #81171098 and #81271305 (to W. Y.), and Chinese National Natural Science Foundation Grants #61227071 (to X. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihai Ying.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

SIRT2 inhibitor AGK2 suppressed LPS-induced microglial activation in mouse brain five days after the dug treatment. (A) Representative immunofluorescence staining for CD11b (green) in the brains five days after the drug administration. Intraventricularly injected LPS (4 μg per mouse) induced a marked increase in the CD11b signals in the brains, which was prevented by simultaneous administration with AGK2 (0.5 μmol or 1 μmol per mouse), assessed at 5 days after the drug administration. (B) Quantifications of the intensity of the CD11b immunofluorescence in the brains. Eight mice in each group. Error bars indicate the standard error of the mean (SEM), ***, p < 0.001. (TIFF 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, Y., Cao, W. et al. SIRT2 Plays Significant Roles in Lipopolysaccharides-Induced Neuroinflammation and Brain Injury in Mice. Neurochem Res 41, 2490–2500 (2016). https://doi.org/10.1007/s11064-016-1981-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1981-2

Keywords

Navigation