Skip to main content
Log in

Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The dopamine transporter (DAT) is a key regulator of dopaminergic neurotransmission. As such, proper regulation of DAT expression is important to maintain homeostasis, and disruption of DAT expression can lead to neurobehavioral dysfunction. Based on genomic features within the promoter of the DAT gene, there is potential for DAT expression to be regulated through epigenetic mechanisms, including DNA methylation and histone acetylation. However, the relative contribution of these mechanisms to DAT expression has not been empirically determined. Using pharmacologic and genetic approaches, we demonstrate that inhibition of DNA methyltransferase (DNMT) activity increased DAT mRNA approximately 1.5–2 fold. This effect was confirmed by siRNA knockdown of DNMT1. Likewise, the histone deacetylase (HDAC) inhibitors valproate and butyrate also increased DAT mRNA expression, but the response was much more robust with expression increasing over tenfold. Genetic knockdown of HDAC1 by siRNA also increased DAT expression, but not to the extent seen with pharmacological inhibition, suggesting additional isoforms of HDAC or other targets may contribute to the observed effect. Together, these data identify the relative contribution of DNMTs and HDACs in regulating expression. These finding may aid in understanding the mechanistic basis for changes in DAT expression in normal and pathophysiological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haberland N, Hetey L (1987) Studies in postmortem dopamine uptake. II. Alterations of the synaptosomal catecholamine uptake in postmortem brain regions in schizophrenia. J Neural Transm 68:303–313

    Article  CAS  PubMed  Google Scholar 

  2. Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL (1995) Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 56:993–998

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Malison RT, McDougle CJ, van Dyck CH, Scahill L, Baldwin RM, Seibyl JP, Price LH, Leckman JF, Innis RB (1995) [123I]beta-CIT SPECT imaging of striatal dopamine transporter binding in Tourette’s disorder. Am J Psychiatry 152:1359–1361

    Article  CAS  PubMed  Google Scholar 

  4. Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49

    Article  CAS  PubMed  Google Scholar 

  5. Nirenberg MJ, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436–447

    CAS  PubMed  Google Scholar 

  6. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998) Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 95:4029–4034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Gainetdinov RR, Caron MG (2003) Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 43:261–284

    Article  CAS  PubMed  Google Scholar 

  8. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  CAS  PubMed  Google Scholar 

  9. Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579

    Article  CAS  PubMed  Google Scholar 

  10. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    Article  CAS  PubMed  Google Scholar 

  11. Vandenbergh DJ, Persico AM, Uhl GR (1992) A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs. Brain Res Mol Brain Res 15:161–166

    Article  CAS  PubMed  Google Scholar 

  12. Kouzmenko AP, Pereira AM, Singh BS (1997) Intronic sequences are involved in neural targeting of human dopamine transporter gene expression. Biochem Biophys Res Commun 240:807–811

    Article  CAS  PubMed  Google Scholar 

  13. Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5’-flanking region of the human dopamine transporter gene. Brain Res Mol Brain Res 74:167–174

    Article  CAS  PubMed  Google Scholar 

  14. Shumay E, Fowler JS, Volkow ND (2010) Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. Plos One 5:e11067

    Article  PubMed Central  PubMed  Google Scholar 

  15. Martinat C, Bacci JJ, Leete T, Kim J, Vanti WB, Newman AH, Cha JH, Gether U, Wang H, Abeliovich A (2006) Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl Acad Sci USA 103:2874–2879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Blake MC, Jambou RC, Swick AG, Kahn JW, Azizkhan JC (1990) Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol 10:6632–6641

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Choi JK, Kim YJ (2008) Epigenetic regulation and the variability of gene expression. Nat Genet 40:141–147

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20:1170–1177

    Article  CAS  PubMed  Google Scholar 

  19. Hillemacher T, Frieling H, Hartl T, Wilhelm J, Kornhuber J, Bleich S (2009) Promoter specific methylation of the dopamine transporter gene is altered in alcohol dependence and associated with craving. J Psychiatr Res 43:388–392

    Article  PubMed  Google Scholar 

  20. Kawarai T, Kawakami H, Yamamura Y, Nakamura S (1997) Structure and organization of the gene encoding human dopamine transporter. Gene 195:11–18

    Article  CAS  PubMed  Google Scholar 

  21. Holler M, Westin G, Jiricny J, Schaffner W (1988) Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev 2:1127–1135

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Michelhaugh SK, Bannon MJ (2007) Valproate robustly increases Sp transcription factor-mediated expression of the dopamine transporter gene within dopamine cells. Eur J Neurosci 25:1982–1986

    Article  PubMed  Google Scholar 

  23. Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide-induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci 122:512–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  25. Aranyi T, Faucheux BA, Khalfallah O, Vodjdani G, Biguet NF, Mallet J, Meloni R (2005) The tissue-specific methylation of the human tyrosine hydroxylase gene reveals new regulatory elements in the first exon. J Neurochem 94:129–139

    Article  CAS  PubMed  Google Scholar 

  26. Bence M, Koller J, Sasvari-Szekely M, Keszler G (2012) Transcriptional modulation of monoaminergic neurotransmission genes by the histone deacetylase inhibitor trichostatin A in neuroblastoma cells. J Neural Transm 119:17–24

    Article  CAS  PubMed  Google Scholar 

  27. Ma P, Schultz RM (2008) Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos. Dev Biol 319:110–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ (2007) Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 31:47–58

    Article  CAS  PubMed  Google Scholar 

  30. Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, MacLeod AR (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65

    Article  CAS  PubMed  Google Scholar 

  31. Volpicelli F, De Gregorio R, Pulcrano S, Perrone-Capano C, di Porzio U, Bellenchi GC (2012) Direct regulation of Pitx3 expression by Nurr1 in culture and in developing mouse midbrain. Plos One 7:e30661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Aarnisalo P, Kim CH, Lee JW, Perlmann T (2002) Defining requirements for heterodimerization between the retinoid X receptor and the orphan nuclear receptor Nurr1. J Biol Chem 277:35118–35123

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Bannon MJ (2005) Sp1 and Sp3 activate transcription of the human dopamine transporter gene. J Neurochem 93:474–482

    Article  CAS  PubMed  Google Scholar 

  34. Hwang DY, Hong S, Jeong JW, Choi S, Kim H, Kim J, Kim KS (2009) Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J Neurochem 111:1202–1212

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Xiong N, Liu Y, Zhou Y, Li N, Qing H, Lin Z (2013) Human dopamine transporter gene: differential regulation of 18-kb haplotypes. Pharmacogenomics 14:1481–1494

    Article  CAS  PubMed  Google Scholar 

  36. He XB, Yi SH, Rhee YH, Kim H, Han YM, Lee SH, Lee H, Park CH, Lee YS, Richardson E, Kim BW (2011) Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 29:1861–1873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by NIEHS R01ES015991, R01ES021800, P30ES005022, and T32ES007148. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, which had no role in the design, analysis, or writing of this manuscript.

Conflict of interest

The authors declare no conflicts of interest regarding the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Richardson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, A.L., Hossain, M.M., Tee, S.C. et al. Epigenetic Regulation of Dopamine Transporter mRNA Expression in Human Neuroblastoma Cells. Neurochem Res 40, 1372–1378 (2015). https://doi.org/10.1007/s11064-015-1601-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1601-6

Keywords

Navigation