Skip to main content

Advertisement

Log in

Chronic Phencyclidine Induces Inflammatory Responses and Activates GSK3β in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Use of phencyclidine (PCP) in rodents can mimic some aspects of schizophrenia. However, the underlying mechanism is still unclear. Growing evidence indicates that neuroinflammation plays a significant role in the pathophysiology of schizophrenia. In this study, we focused on inflammatory responses as target of PCP for inducing schizophrenia-like symptoms. 3-month-old C57BL/6J mice received daily injections of PCP (20 mg/kg, i.p.) or saline for one week. PCP-injected mice produced schizophrenia-like behaviours including impaired spatial short-term memory assessed by the Y-maze task and sensorimotor gating deficits in a prepulse inhibition task. Simultaneously, chronic PCP administration induced astrocyte and microglial activation in both the cortex and hippocampus. Additionally, the proinflammatory cytokine interleukin-1β was significantly up-regulated in PCP administrated mice. Furthermore, PCP treatment decreased ratio of the phospho-Ser9 epitope of glycogen synthase kinase-3β (GSK3β) over total GSK3β, which is indicative of increased GSK3β activity. These data demonstrate that chronic PCP in mouse produces inflammatory responses and GSK3β activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andreasen NC (1996) Pieces of the schizophrenia puzzle fall into place. Neuron 16(4):697–700

    Article  CAS  PubMed  Google Scholar 

  2. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334

    Article  CAS  PubMed  Google Scholar 

  3. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63(8):801–808

    Article  CAS  PubMed  Google Scholar 

  4. Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA, Daley EL, Zandi PP, Leweke FM, Cascella NG, Pomper MG, Yolken RH, Sawa A (2013) Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry 18(1):10–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. McAllister CG, van Kammen DP, Rehn TJ, Miller AL, Gurklis J, Kelley ME, Yao J, Peters JL (1995) Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am J Psychiatry 152(9):1291–1297

    CAS  PubMed  Google Scholar 

  6. van Berckel BN, Bossong MG, Boellaard R, Kloet R, Schuitemaker A, Caspers E, Luurtsema G, Windhorst AD, Cahn W, Lammertsma AA, Kahn RS (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64(9):820–822

    Article  PubMed  Google Scholar 

  7. Maes M, Bocchio Chiavetto L, Bignotti S, Battisa Tura GJ, Pioli R, Boin F, Kenis G, Bosmans E, de Jongh R, Altamura CA (2002) Increased serum interleukin-8 and interleukin-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 54(3):281–291

    Article  PubMed  Google Scholar 

  8. Sommer IE, de Witte L, Begemann M, Kahn RS (2012) Nonsteroidal anti-inflammatory drugs in schizophrenia: ready for practice or a good start? A meta-analysis. J Clin Psychiatry 73(4):414–419

    Article  CAS  PubMed  Google Scholar 

  9. Mondelli V, Howes O (2014) Inflammation: its role in schizophrenia and the potential anti-inflammatory effects of antipsychotics. Psychopharmacology 231(2):317–318

    Article  CAS  PubMed  Google Scholar 

  10. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    Article  CAS  PubMed  Google Scholar 

  11. Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin Psychiatry 9(1):12–35

    CAS  PubMed  Google Scholar 

  12. Castellani S, Adams PM (1981) Acute and chronic phencyclidine effects on locomotor activity, stereotypy and ataxia in rats. Eur J Pharmacol 73(2–3):143–154

    Article  CAS  PubMed  Google Scholar 

  13. Jackson DM, Johansson C, Lindgren LM, Bengtsson A (1994) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol Biochem Behav 48(2):465–471

    Article  CAS  PubMed  Google Scholar 

  14. Kitaichi K, Yamada K, Hasegawa T, Furukawa H, Nabeshima T (1994) Effects of risperidone on phencyclidine-induced behaviors: comparison with haloperidol and ritanserin. Jpn J Pharmacol 66(2):181–189

    Article  CAS  PubMed  Google Scholar 

  15. Ogren SO, Goldstein M (1994) Phencyclidine- and dizocilpine-induced hyperlocomotion are differentially mediated. Neuropsychopharmacology 11(3):167–177

    Article  CAS  PubMed  Google Scholar 

  16. Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296(5568):692–695

    Article  CAS  PubMed  Google Scholar 

  17. Johnson KM, Phillips M, Wang C, Kevetter GA (1998) Chronic phencyclidine induces behavioral sensitization and apoptotic cell death in the olfactory and piriform cortex. J Neurosci Res 52(6):709–722

    Article  CAS  PubMed  Google Scholar 

  18. Jope RS, Johnson GV (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29(2):95–102

    Article  CAS  PubMed  Google Scholar 

  19. Lei G, Xia Y, Johnson KM (2008) The role of Akt-GSK-3beta signaling and synaptic strength in phencyclidine-induced neurodegeneration. Neuropsychopharmacology 33(6):1343–1353

    Article  CAS  PubMed  Google Scholar 

  20. Buss H, Dorrie A, Schmitz ML, Frank R, Livingstone M, Resch K, Kracht M (2004) Phosphorylation of serine 468 by GSK-3beta negatively regulates basal p65 NF-kappaB activity. J Biol Chem 279(48):49571–49574

    Article  CAS  PubMed  Google Scholar 

  21. Takada Y, Fang X, Jamaluddin MS, Boyd DD, Aggarwal BB (2004) Genetic deletion of glycogen synthase kinase-3beta abrogates activation of IkappaBalpha kinase, JNK, Akt, and p44/p42 MAPK but potentiates apoptosis induced by tumor necrosis factor. J Biol Chem 279(38):39541–39554

    Article  CAS  PubMed  Google Scholar 

  22. Vines A, Cahoon S, Goldberg I, Saxena U, Pillarisetti S (2006) Novel anti-inflammatory role for glycogen synthase kinase-3beta in the inhibition of tumor necrosis factor-alpha- and interleukin-1beta-induced inflammatory gene expression. J Biol Chem 281(25):16985–16990

    Article  CAS  PubMed  Google Scholar 

  23. Xiao L, Xu H, Zhang Y, Wei Z, He J, Jiang W, Li X, Dyck LE, Devon RM, Deng Y, Li XM (2008) Quetiapine facilitates oligodendrocyte development and prevents mice from myelin breakdown and behavioral changes. Mol Psychiatry 13(7):697–708

    Article  CAS  PubMed  Google Scholar 

  24. Zhu S, He J, Zhang R, Kong L, Tempier A, Kong J, Li XM (2013) Therapeutic effects of quetiapine on memory deficit and brain beta-amyloid plaque pathology in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 10(3):270–278

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, He J, Zhang R, Zhu S, Wang J, Kong L, Tan Q, Li XM (2012) Sensorimotor gating and memory deficits in an APP/PS1 double transgenic mouse model of Alzheimer’s disease. Behav Brain Res 233(1):237–243

    Article  CAS  PubMed  Google Scholar 

  26. He J, Xu H, Yang Y, Rajakumar D, Li X, Li XM (2006) The effects of chronic administration of quetiapine on the phencyclidine-induced reference memory impairment and decrease of Bcl-XL/Bax ratio in the posterior cingulate cortex in rats. Behav Brain Res 168(2):236–242

    Article  CAS  PubMed  Google Scholar 

  27. Donnelly DJ, Gensel JC, Ankeny DP, van Rooijen N, Popovich PG (2009) An efficient and reproducible method for quantifying macrophages in different experimental models of central nervous system pathology. J Neurosci Methods 181(1):36–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. O’Callaghan JP, Jensen KF, Miller DB (1995) Quantitative aspects of drug and toxicant-induced astrogliosis. Neurochem Int 26(2):115–124

    Article  PubMed  Google Scholar 

  29. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Green HF, Nolan YM (2012) GSK-3 mediates the release of IL-1beta, TNF-alpha and IL-10 from cortical glia. Neurochem Int 61(5):666–671

    Article  CAS  PubMed  Google Scholar 

  31. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2(10):769–776

    Article  CAS  PubMed  Google Scholar 

  32. Harvey PD, Green MF, Keefe RS, Velligan DI (2004) Cognitive functioning in schizophrenia: a consensus statement on its role in the definition and evaluation of effective treatments for the illness. J Clin Psychiatry 65(3):361–372

    Article  PubMed  Google Scholar 

  33. McAllister KH (1997) A time-activity baseline to measure pharmacological and non-pharmacological manipulations of PCP-induced activity in mice. Psychopharmacology 134(2):157–163

    Article  CAS  PubMed  Google Scholar 

  34. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15(4):339–343

    Article  CAS  PubMed  Google Scholar 

  35. Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2):181–188

    Article  CAS  PubMed  Google Scholar 

  36. Zhang R, He J, Zhu S, Zhang H, Wang H, Adilijiang A, Kong L, Wang J, Kong J, Tan Q, Li XM (2012) Myelination deficit in a phencyclidine-induced neurodevelopmental model of schizophrenia. Brain Res 1469:136–143

    Article  CAS  PubMed  Google Scholar 

  37. Geyer MA, Dulawa SC (2003) Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci 8(8):17

    PubMed  Google Scholar 

  38. Mitchell IJ, Cooper AJ, Griffiths MR, Barber DJ (1998) Phencyclidine and corticosteroids induce apoptosis of a subpopulation of striatal neurons: a neural substrate for psychosis? Neuroscience 84(2):489–501

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM (2001) Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107(4):535–550

    Article  CAS  PubMed  Google Scholar 

  40. Schnieder TP, Dwork AJ (2011) Searching for neuropathology: gliosis in schizophrenia. Biol Psychiatry 69(2):134–139

    Article  PubMed Central  PubMed  Google Scholar 

  41. Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50(11):1801–1807

    Article  PubMed  Google Scholar 

  42. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    Article  CAS  PubMed  Google Scholar 

  43. Tezuka T, Tamura M, Kondo MA, Sakaue M, Okada K, Takemoto K, Fukunari A, Miwa K, Ohzeki H, Kano S, Yasumatsu H, Sawa A, Kajii Y (2013) Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol Dis 59:63–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Conti F, Minelli A, DeBiasi S, Melone M (1997) Neuronal and glial localization of NMDA receptors in the cerebral cortex. Mol Neurobiol 14(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  45. Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P (2012) Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 72(4):536–549

    Article  CAS  PubMed  Google Scholar 

  46. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB (1988) Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8(7):2485–2490

    CAS  PubMed  Google Scholar 

  47. O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18

    Article  PubMed  Google Scholar 

  48. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36(2):131–137

    Article  CAS  PubMed  Google Scholar 

  49. Gui B, Su M, Chen J, Jin L, Wan R, Qian Y (2012) Neuroprotective effects of pretreatment with propofol in LPS-induced BV-2 microglia cells: role of TLR4 and GSK-3beta. Inflammation 35(5):1632–1640

    Article  CAS  PubMed  Google Scholar 

  50. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Cole AR (2013) Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia. FEBS J 280(21):5213–5227

    Article  CAS  PubMed  Google Scholar 

  52. Amar S, Jones BC, Nadri C, Kozlovsky N, Belmaker RH, Agam G (2004) Genetic correlational analysis of glycogen synthase kinase-3 beta and prepulse inhibition in inbred mice. Genes Brain Behav 3(3):178–180

    Article  CAS  PubMed  Google Scholar 

  53. Kapfhamer D, Berger KH, Hopf FW, Seif T, Kharazia V, Bonci A, Heberlein U (2010) Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channel activity. J Neurosci 30(26):8830–8840

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Manitoba Health Research Council, and the Canadian Institutes of Health Research to Dr. X. M. Li, S. Zhu is a recipient of the graduate studentships from the Manitoba Health Research Council.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Min Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wang, H., Shi, R. et al. Chronic Phencyclidine Induces Inflammatory Responses and Activates GSK3β in Mice. Neurochem Res 39, 2385–2393 (2014). https://doi.org/10.1007/s11064-014-1441-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1441-9

Keywords

Navigation