Skip to main content
Log in

[+]-Huperzine A Protects Against Soman Toxicity in Guinea Pigs

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The chemical warfare nerve agent (CWNA) soman irreversibly inhibits acetylcholinesterase (AChE) causing seizure, neuropathology and neurobehavioral deficits. Pyridostigmine bromide (PB), the currently approved pretreatment for soman, is a reversible AChE inhibitor that does not cross the blood–brain barrier (BBB) to protect against central nervous system damage. [−]-Huperzine A, a natural reversible AChE inhibitor, rapidly passes through the BBB and has numerous neuroprotective properties that are beneficial for protection against soman. However, [−]-Huperzine A is toxic at higher doses due to potent AChE inhibition which limits the utilization of its neuroprotective properties. [+]-Huperzine A, a synthetic stereoisomer of [−]-Huperzine A and a weak inhibitor of AChE, is non-toxic. In this study, we evaluated the efficacy of [+]-Huperzine A for protection against soman toxicity in guinea pigs. Pretreatments with [+]-Huperzine A, i.m., significantly increased the survival rate in a dose-dependent manner against 1.2× LD50 soman exposures. Behavioral signs of soman toxicity were significantly reduced in 20 and 40 mg/kg [+]-Huperzine A treated animals at 4 and 24 h compared to vehicle and PB controls. Electroencephalogram (EEG) power spectral analysis showed that [+]-Huperzine A significantly reduces soman-induced seizure compared to PB. [+]-Huperzine A (40 mg/kg) preserved higher blood and brain AChE activity compared to PB in soman exposed animals. These data suggest that [+]-Huperzine A protects against soman toxicity stronger than PB and warrant further development as a potent medical countermeasure against CWNA poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

BBB:

Blood-brain barrier

BChE:

Butyrylcholinesterase

CNS:

Central nervous system

CWNA:

Chemical warfare nerve agent

DTNB, 5′:

5′-Dithiobis(2-nitrobenzoic acid)

EEG:

Electroencephalogram

Iso-OMPA:

Tetra monoisopropyl pyrophosphortetramide

LD50 :

50% lethal dose

NMDA:

N-methyl-d-aspartate

PB:

Pyridostigmine bromide

2-PAM:

2-Pralidoxime

Soman:

O-pinacolyl methylphosphonofluoridate

References

  1. Cannard K (2006) The acute treatment of nerve agent exposure. J Neurol Sci 249:86–94

    Article  PubMed  CAS  Google Scholar 

  2. Bajgar J (2004) Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem 38:151–216

    Article  PubMed  CAS  Google Scholar 

  3. Lallement G, Foquin A, Dorandeu F, Baubichon D, Carpentier P (2001) Subchronic administration of various pretreatments of nerve agent poisoning. II. Compared efficacy against soman toxicity. Drug Chem Toxicol 24:165–180

    Article  PubMed  CAS  Google Scholar 

  4. Lallement G, Foquin A, Dorandeu F, Baubichon D, Aubriot S, Carpentier P (2001) Subchronic administration of various pretreatments of nerve agent poisoning. I. Protection of blood and central cholinesterases, innocuousness towards blood-brain barrier permeability. Drug Chem Toxicol 24:151–164

    Article  PubMed  CAS  Google Scholar 

  5. Grunwald J, Raveh L, Doctor BP, Ashani Y (1994) Huperzine A as a pretreatment candidate drug against nerve agent toxicity. Life Sci 54:991–997

    Article  PubMed  CAS  Google Scholar 

  6. Gordon JJ, Leadbeater L (1977) The prophylactic use of l-methyl, 2-hydroxyiminomethylpyridinium methanesulfonate (P2S) in the treatment of organophosphate poisoning. Toxicol Appl Pharmacol 40:109–114

    Article  PubMed  CAS  Google Scholar 

  7. Janowsky D, Risch SC, Ziegler M, Gillin JC (1987) Antagonistic effects of scopolamine and atropine on the physostigmine response in man. Mil Med 152:579–581

    PubMed  CAS  Google Scholar 

  8. Albuquerque EX, Pereira EF, Aracava Y, Fawcett WP, Oliveira M, Randall WR, Hamilton TA, Kan RK, Romano JA Jr, Adler M (2006) Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents. Proc Natl Acad Sci USA 103:13220–13225

    Article  PubMed  CAS  Google Scholar 

  9. Alexandrova EA, Aracava Y, Pereira EF, Albuquerque EX (2010) Pretreatment of Guinea pigs with galantamine prevents immediate and delayed effects of soman on inhibitory synaptic transmission in the hippocampus. J Pharmacol Exp Ther 334:1051–1058

    Article  PubMed  CAS  Google Scholar 

  10. Ashani Y, Peggins JO III, Doctor BP (1992) Mechanism of inhibition of cholinesterases by huperzine A. Biochem Biophys Res Commun 184:719–726

    Article  PubMed  CAS  Google Scholar 

  11. McKinney M, Miller JH, Yamada F, Tuckmantel W, Kozikowski AP (1991) Potencies and stereoselectivities of enantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur J Pharmacol 203:303–305

    Article  PubMed  CAS  Google Scholar 

  12. Gordon RK, Haigh JR, Garcia GE, Feaster SR, Riel MA, Lenz DE, Aisen PS, Doctor BP (2005) Oral administration of pyridostigmine bromide and huperzine A protects human whole blood cholinesterases from ex vivo exposure to soman. Chem Biol Interact 157–158:239–246

    Article  PubMed  Google Scholar 

  13. Lallement G, Veyret J, Masqueliez C, Aubriot S, Burckhart MF, Baubichon D (1997) Efficacy of huperzine in preventing soman-induced seizures, neuropathological changes and lethality. Fundam Clin Pharmacol 11:387–394

    Article  PubMed  CAS  Google Scholar 

  14. Tonduli LS, Testylier G, Masqueliez C, Lallement G, Monmaur P (2001) Effects of Huperzine used as pre-treatment against soman-induced seizures. Neurotoxicology 22:29–37

    Article  PubMed  CAS  Google Scholar 

  15. Gao X, Zheng CY, Yang L, Tang XC, Zhang HY (2009) Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 46:1454–1462

    Article  PubMed  CAS  Google Scholar 

  16. Gao X, Tang XC (2006) Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 83:1048–1057

    Article  PubMed  CAS  Google Scholar 

  17. Zhao HW, Li XY (2002) Ginkgolide A, B, and huperzine A inhibit nitric oxide-induced neurotoxicity. Int Immunopharmacol 2:1551–1556

    Article  PubMed  CAS  Google Scholar 

  18. Patocka J (1998) Huperzine A—an interesting anticholinesterase compound from the Chinese herbal medicine. Acta Medica (Hradec. Kralove) 41:155–157

    CAS  Google Scholar 

  19. Wang R, Yan H, Tang XC (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26

    Article  PubMed  Google Scholar 

  20. Zhang HY, Liang YQ, Tang XC, He XC, Bai DL (2002) Stereoselectivities of enantiomers of huperzine A in protection against beta-amyloid(25–35)-induced injury in PC12 and NG108–15 cells and cholinesterase inhibition in mice. Neurosci Lett 317:143–146

    Article  PubMed  CAS  Google Scholar 

  21. Tang LL, Wang R, Tang XC (2005) Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production. Eur J Pharmacol 519:9–15

    Article  PubMed  CAS  Google Scholar 

  22. Xiao XQ, Wang R, Tang XC (2000) Huperzine A and tacrine attenuate beta-amyloid peptide-induced oxidative injury. J Neurosci Res 61:564–569

    Article  PubMed  CAS  Google Scholar 

  23. Xiao XQ, Zhang HY, Tang XC (2002) Huperzine A attenuates amyloid beta-peptide fragment 25–35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 67:30–36

    Article  PubMed  CAS  Google Scholar 

  24. Xiao XQ, Wang R, Han YF, Tang XC (2000) Protective effects of huperzine A on beta-amyloid(25–35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 286:155–158

    Article  PubMed  CAS  Google Scholar 

  25. Tang LL, Wang R, Tang XC (2005) Effects of huperzine A on secretion of nerve growth factor in cultured rat cortical astrocytes and neurite outgrowth in rat PC12 cells. Acta Pharmacol Sin 26:673–678

    Article  PubMed  CAS  Google Scholar 

  26. Gordon RK, Nigam SV, Weitz JA, Dave JR, Doctor BP, Ved HS (2001) The NMDA receptor ion channel: a site for binding of Huperzine A. J Appl Toxicol 21(Suppl 1):S47–S51

    Google Scholar 

  27. Wang XD, Zhang JM, Yang HH, Hu GY (1999) Modulation of NMDA receptor by huperzine A in rat cerebral cortex. Zhongguo Yao Li Xue Bao 20:31–35

    PubMed  Google Scholar 

  28. Zhang HY, Tang XC (2006) Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease. Trends Pharmacol Sci 27:619–625

    Article  PubMed  CAS  Google Scholar 

  29. Zhang YH, Chen XQ, Yang HH, Jin GY, Bai DL, Hu GY (2000) Similar potency of the enantiomers of huperzine A in inhibition of [(3)H]dizocilpine (MK-801) binding in rat cerebral cortex. Neurosci Lett 295:116–118

    Article  PubMed  CAS  Google Scholar 

  30. Laganiere S, Corey J, Tang XC, Wulfert E, Hanin I (1991) Acute and chronic studies with the anticholinesterase Huperzine A: effect on central nervous system cholinergic parameters. Neuropharmacology 30:763–768

    Article  PubMed  CAS  Google Scholar 

  31. Tang XC, Kindel GH, Kozikowski AP, Hanin I (1994) Comparison of the effects of natural and synthetic huperzine-A on rat brain cholinergic function in vitro and in vivo. J Ethnopharmacol 44:147–155

    Article  PubMed  CAS  Google Scholar 

  32. Hanin I, Tang XC, Kindel GL, Kozikowski AP (1993) Natural and synthetic Huperzine A: effect on cholinergic function in vitro and in vivo. Ann NY Acad Sci 695:304–306

    Article  PubMed  CAS  Google Scholar 

  33. Zhang HY, Tang XC (2000) Huperzine B, a novel acetylcholinesterase inhibitor, attenuates hydrogen peroxide induced injury in PC12 cells. Neurosci Lett 292:41–44

    Article  PubMed  CAS  Google Scholar 

  34. Coleman BR, Ratcliffe RH, Oguntayo SA, Shi X, Doctor BP, Gordon RK, Nambiar MP (2008) [+]-Huperzine A treatment protects against N-methyl-d-aspartate-induced seizure/status epilepticus in rats. Chem Biol Interact 175:387–395

    Article  PubMed  CAS  Google Scholar 

  35. Shih TM, Koviak TA, Capacio BR (1991) Anticonvulsants for poisoning by the organophosphorus compound soman: pharmacological mechanisms. Neurosci Biobehav Rev 15:349–362

    Article  PubMed  CAS  Google Scholar 

  36. Shih TM, McDonough JH (2000) Efficacy of biperiden and atropine as anticonvulsant treatment for organophosphorus nerve agent intoxication. Arch Toxicol 74:165–172

    Article  PubMed  CAS  Google Scholar 

  37. Shih TM, Duniho SM, McDonough JH (2003) Control of nerve agent-induced seizures is critical for neuroprotection and survival. Toxicol Appl Pharmacol 188:69–80

    Article  PubMed  CAS  Google Scholar 

  38. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  PubMed  CAS  Google Scholar 

  39. Pazdernik TL, Emerson MR, Cross R, Nelson SR, Samson FE (2001) Soman-induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 21(Suppl 1):S87–S94

    Google Scholar 

  40. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  41. Pejchal J, Osterreicher J, Kassa J, Tichy A, Micuda S, Sinkorova Z, Zarybnicka L (2009) Soman poisoning alters p38 MAPK pathway in rat cerebellar Purkinje cells. J Appl Toxicol 29:338–345

    Article  PubMed  CAS  Google Scholar 

  42. Angoa-Perez M, Kreipke CW, Thomas DM, Van Shura KE, Lyman M, McDonough JH, Kuhn DM (2010) Soman increases neuronal COX-2 levels: possible link between seizures and protracted neuronal damage. Neurotoxicology 31:738–746

    Article  PubMed  CAS  Google Scholar 

  43. Dillman JF III, Phillips CS, Kniffin DM, Tompkins CP, Hamilton TA, Kan RK (2009) Gene expression profiling of rat hippocampus following exposure to the acetylcholinesterase inhibitor soman. Chem Res Toxicol 22:633–638

    Article  PubMed  CAS  Google Scholar 

  44. Johnson EA, Kan RK (2010) The acute phase response and soman-induced status epilepticus: temporal, regional and cellular changes in rat brain cytokine concentrations. J Neuroinflammation 7:40

    Article  PubMed  Google Scholar 

  45. Bhagat YA, Obenaus A, Hamilton MG, Mikler J, Kendall EJ (2005) Neuroprotection from soman-induced seizures in the rodent: evaluation with diffusion- and T2-weighted magnetic resonance imaging. Neurotoxicology 26:1001–1013

    Article  PubMed  CAS  Google Scholar 

  46. Testylier G, Lahrech H, Montigon O, Foquin A, Delacour C, Bernabe D, Segebarth C, Dorandeu F, Carpentier P (2007) Cerebral edema induced in mice by a convulsive dose of soman. Evaluation through diffusion-weighted magnetic resonance imaging and histology. Toxicol Appl Pharmacol 220:125–137

    Article  PubMed  CAS  Google Scholar 

  47. Collombet JM, Pierard C, Beracochea D, Coubard S, Burckhart MF, Four E, Masqueliez C, Baubichon D, Lallement G (2008) Long-term consequences of soman poisoning in mice Part 1. Neuropathology and neuronal regeneration in the amygdala. Behav Brain Res 191:88–94

    Article  PubMed  CAS  Google Scholar 

  48. Carpentier P, Delamanche IS, Le BM, Blanchet G, Bouchaud C (1990) Seizure-related opening of the blood-brain barrier induced by soman: possible correlation with the acute neuropathology observed in poisoned rats. Neurotoxicology 11:493–508

    PubMed  CAS  Google Scholar 

  49. Shih TM, Rowland TC, McDonough JH (2007) Anticonvulsants for nerve agent-induced seizures: the influence of the therapeutic dose of atropine. J Pharmacol Exp Ther 320:154–161

    Article  PubMed  CAS  Google Scholar 

  50. Myhrer T, Enger S, Aas P (2010) Behavioral side effects in rats treated with acetylcholinesterase inhibitors suggested used as prophylactics against nerve agents. Pharmacol Biochem Behav 95:338–343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Defense Threat Reduction Agency (DTRA) Grant #1.E0003_08_WR_C. The technical assistance from Collaborative Research Facility, USAMRICD is greatly acknowledged.

Conflict of interest

The authors have no financial or personal conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusoodana P. Nambiar.

Additional information

Disclosure: The opinions and assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Army, the Navy, or the Department of Defense, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wei, Y., Oguntayo, S. et al. [+]-Huperzine A Protects Against Soman Toxicity in Guinea Pigs. Neurochem Res 36, 2381–2390 (2011). https://doi.org/10.1007/s11064-011-0564-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0564-5

Keywords

Navigation