Skip to main content

Advertisement

Log in

Neurochemicals for the Investigation of GABAC Receptors

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

GABAC receptors are being investigated for their role in many aspects of nervous system function including memory, myopia, pain and sleep. There is evidence for functional GABAC receptors in many tissues such as retina, hippocampus, spinal cord, superior colliculus, pituitary and the gut. This review describes a variety of neurochemicals that have been shown to be useful in distinguishing GABAC receptors from other receptors for the major inhibitory neurotransmitter GABA. Some selective agonists (including (+)-CAMP and 5-methyl-IAA), competitive antagonists (such as TPMPA, (±)-cis-3-ACPBPA and aza-THIP), positive (allopregnanolone) and negative modulators (epipregnanolone, loreclezole) are described. Neurochemicals that may assist in distinguishing between homomeric ρ1 and ρ2 GABAC receptors (2-methyl-TACA and cyclothiazide) are also covered. Given their less widespread distribution, lower abundance and relative structural simplicity compared to GABAA and GABAB receptors, GABAC receptors are attractive drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aza-THIP:

4,5,6,7-tetrahydropyrazolo[3,4-c]pyridin-3-ol

CACA:

cis-4-aminocrotonic acid

(+)-CAMP:

(1S,2R)-2-aminomethylcyclopropanecarboxylic acid

(±)-cis-3-ACPBPA:

(±)-cis-(3-aminocyclopentanyl)butylphosphinic acid

5-Me-IAA:

5-methyl-1H-imidazole-4-acetic acid

2-Methyl-TACA:

trans-4-amino-2-methylbut-2-enoic acid

P4MPA:

(piperidin-4-yl)methylphosphinic acid

SGS742:

(3-aminopropyl)-n-butylphosphinic acid

THIP:

4,5,6,7-tetrahydroisolazolo[5,4-c]pyridin-3-ol

TPMPA:

(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid

References

  1. Gibbs ME, Johnston GAR (2005) Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 131:567–576

    Article  CAS  PubMed  Google Scholar 

  2. Chebib M, Hinton T, Schmid KL et al (2009) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328:448–457

    Article  CAS  PubMed  Google Scholar 

  3. Froestl W, Markstein R, Schmid KL et al (2004) GABAC antagonists for the treatment of myopia. PCT Int Appl:20030627

  4. Reis GM, Duarte ID (2007) Involvement of chloride channel coupled GABAC receptors in the peripheral antinociceptive effect induced by GABAC receptor agonist cis-4-aminocrotonic acid. Life Sci 80:1268–1273

    Article  CAS  PubMed  Google Scholar 

  5. Arnaud C, Gauthier P, Gottesmann C (2001) Study of a GABAC receptor antagonist on sleep-waking behavior in rats. Psychopharmacology (Berl) 154:415–419

    Article  CAS  Google Scholar 

  6. Abdel-Halim H, Hanrahan JR, Hibbs DE et al (2008) A molecular basis for agonist and antagonist actions at GABAC receptors. Chem Biol Drug Des 71:306–327

    Article  CAS  PubMed  Google Scholar 

  7. Johnston GAR, Curtis DR, Beart PM et al (1975) Cis- and trans-4-aminocrotonic acid as GABA analogues of restricted conformation. J Neurochem 24:157–160

    Article  CAS  PubMed  Google Scholar 

  8. Drew CA, Johnston GAR, Weatherby RP (1984) Bicuculline-insensitive GABA receptors: studies on the binding of (−)-baclofen to rat cerebellar membranes. Neurosci Lett 52:317–321

    Article  CAS  PubMed  Google Scholar 

  9. Cutting GR, Lu L, O’Hara BF et al (1991) Cloning of the γ-aminobutyric acid (GABA) ρ1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc Natl Acad Sci USA 88:2673–2677

    Article  CAS  PubMed  Google Scholar 

  10. Polenzani L, Woodward RM, Miledi R (1991) Expression of mammalian γ-aminobutyric acid receptors with distinct pharmacology in Xenopus oocytes. Proc Natl Acad Sci USA 88:4318–4322

    Article  CAS  PubMed  Google Scholar 

  11. Cutting GR, Curristin S, Zoghbi H et al (1992) Identification of a putative γ-aminobutyric acid (GABA) receptor subunit ρ2 cDNA and colocalization of the genes encoding ρ2 (GABRR2) and ρ1 (GABRR1) to human chromosome 6q14–q21 and mouse chromosome 4. Genomics 12:801–806

    Article  CAS  PubMed  Google Scholar 

  12. Ogurusu T, Shingai R (1996) Cloning of a putative γ-aminobutyric acid (GABA) receptor subunit ρ3 cDNA. Biochim Biophys Acta 1305:15–18

    PubMed  Google Scholar 

  13. Chebib M, Johnston GAR (2000) GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem 43:1427–1447

    Article  CAS  PubMed  Google Scholar 

  14. Bailey M, Albrecht BE, Johnson KJ et al (1999) Genetic linkage and radiation hybrid mapping of the three human GABAC receptor ρ subunit genes: GABRR1, GABRR2 and GABRR3. Biochim Biophys Acta Gene Struct Expr 1447:307–312

    CAS  Google Scholar 

  15. Ogurusu T, Yanagi K, Watanabe M et al (1999) Localization of GABA receptor ρ2 and ρ3 subunits in rat brain and functional expression of homooligomeric ρ3 receptors and heterooligomeric ρ2 ρ3 receptors. Recept Channels 6:463–475

    CAS  PubMed  Google Scholar 

  16. Liu B, Hattori N, Jiang B et al (2004) Single cell RT-PCR demonstrates differential expression of GABAC receptor ρ subunits in rat hippocampal pyramidal and granule cells. Brain Res Mol Brain Res 123:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Koulen P, Brandstatter JH, Enz R et al (1998) Synaptic clustering of GABAC receptor ρ-subunits in the rat retina. Eur J Neurosci 10:115–127

    Article  CAS  PubMed  Google Scholar 

  18. Johnston GAR (2002) Medicinal chemistry and molecular pharmacology of GABAC receptors. Curr Top Med Chem 2:897–907

    Article  Google Scholar 

  19. Bormann J, Feigenspan A (2001) GABAC receptors: structure, function and pharmacology. Hndb Expt Pharmac 150:271–296

    CAS  Google Scholar 

  20. McCall MA, Lukasiewicz PD, Gregg RG et al (2002) Elimination of the ρ1 subunit abolishes GABAC receptor expression and alters visual processing in the mouse retina. J Neurosci 22:4163–4174

    CAS  PubMed  Google Scholar 

  21. Zheng W, Zhao X, Wang J et al (2010) Retinal vascular leakage occurring in GABA ρ1 subunit deficient mice. Exp Eye Res 90:634–640

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Zhou D, Zhou K et al (2007) Study on olfactory function in GABAC receptor/channel ρ1 subunit knockout mice. Neurosci Lett 427:10–15

    Article  CAS  PubMed  Google Scholar 

  23. Schlicker K, McCall MA, Schmidt M (2009) GABAC receptor-mediated inhibition is altered but not eliminated in the superior colliculus of GABAC ρ1 knockout mice. J Neurophysiol 101:2974–2983

    Article  CAS  PubMed  Google Scholar 

  24. Klein RD, Brennan TJ (2002) Disruptions in GABA receptor ρ2 subunit. Methods and uses thereof. Patent:WO/2002/079380

  25. Alakuijala A, Alakuijala J, Pasternack M (2006) Evidence for a functional role of GABA receptors in the rat mature hippocampus. Eur J Neurosci 23:514–520

    Article  PubMed  Google Scholar 

  26. Xu JY, Yang B, Sastry BR (2009) The involvement of GABAC receptors in paired-pulse depression of inhibitory postsynaptic currents in rat hippocampal CA1 pyramidal neurons. Exp Neurol 216:243–246

    Article  CAS  PubMed  Google Scholar 

  27. Boue-Grabot E, Taupignon A, Tramu G et al (2000) Molecular and electrophysiological evidence for a GABAC receptor in thyrotropin-secreting cells. Endocrinology 141:1627–1632

    Article  CAS  PubMed  Google Scholar 

  28. Rozzo A, Ballerini L, Nistri A (1999) Antagonism by (1,2,5,6-tetrahydropyridine-4-yl) methylphosphinic acid of synaptic transmission in the neonatal rat spinal cord in vitro: an electrophysiological study. Neuroscience 90:1085–1092

    Article  CAS  PubMed  Google Scholar 

  29. Fletcher EL, Clark MJ, Senior P et al (2001) Gene expression and localization of GABAC receptors in neurons of the rat gastrointestinal tract. Neuroscience 107:181–189

    Article  CAS  PubMed  Google Scholar 

  30. Zizzo MG, Mule F, Serio R (2007) Functional evidence for GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: role of GABAA and GABAC receptors. Neuropharmacology 52:1685–1690

    Article  CAS  PubMed  Google Scholar 

  31. Kusama T, Spivak CE, Whiting P et al (1993) Pharmacology of GABA ρ1 and GABA α/β receptors expressed in Xenopus oocytes and COS cells. Br J Pharmacol 109:200–206

    CAS  PubMed  Google Scholar 

  32. Kusama T, Wang TL, Guggino WB et al (1993) GABA ρ2 receptor pharmacological profile: GABA recognition site similarities to ρ1. Eur J Pharmacol 245:83–84

    Article  CAS  PubMed  Google Scholar 

  33. Johnston GAR, Stephanson AL (1976) Inhibitors of the glial uptake of β-alanine in rat brain slices. Brain Res 102:374–378

    Article  CAS  PubMed  Google Scholar 

  34. Biedermann B, Eberhardt W, Reichelt W (1994) GABA uptake into isolated retinal Muller glial cells of the guinea-pig detected electrophysiologically. Neuroreport 5:438–440

    Article  CAS  PubMed  Google Scholar 

  35. Kragler A, Hofner G, Wanner KT (2005) Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur J Pharmacol 519:43–47

    Article  CAS  PubMed  Google Scholar 

  36. Wall MJ (2001) Cis-4-amino-crotonic acid activates alpha 6 subunit-containing GABAA but not GABAC receptors in granule cells of adult rat cerebellar slices. Neurosci Lett 316:37–40

    Article  CAS  PubMed  Google Scholar 

  37. Duke RK, Chebib M, Balcar VJ et al (2000) (+)- and (-)-cis-2-Aminomethylcyclopropanecarboxy acids show opposite pharmacology at recombinant ρ(1) and ρ(2) GABAC receptors. J Neurochem 75:2602–2610

    Article  CAS  PubMed  Google Scholar 

  38. Madsen C, Jensen AA, Liljefors T et al (2007) 5-Substituted imidazole-4-acetic acid analogues: synthesis, modeling, and pharmacological characterization of a series of novel γ-aminobutyric acidC receptor agonists. J Med Chem 50:4147–4161

    Article  CAS  PubMed  Google Scholar 

  39. Johnston GAR (1996) GABAA receptor pharmacology. Pharmacol Ther 69:173–198

    Article  CAS  PubMed  Google Scholar 

  40. Murata Y, Woodward RM, Miledi R et al (1996) The first selective antagonist for a GABAC receptor. Bioorg Med Chem Lett 6:2073–2076

    Article  CAS  Google Scholar 

  41. Ragozzino D, Woodward RM, Murata Y et al (1996) Design and in vitro pharmacology of a selective γ-aminobutyric acidC receptor antagonist. Mol Pharmacol 50:1024–1030

    CAS  PubMed  Google Scholar 

  42. Chebib M, Mewett KN, Johnston GAR (1998) GABAC receptor antagonists differentiate between human ρ1 and ρ2 receptors expressed in Xenopus oocytes. Eur J Pharmacol 357:227–234

    Article  CAS  PubMed  Google Scholar 

  43. Vien J, Duke RK, Mewett KN et al (2002) trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (±)-trans-2-aminomethylcyclopropanecarboxyic acid (±)-TAMP) can differentiate rat ρ3 from human ρ1 and ρ2 recombinant GABAC receptors. Br J Pharmacol 135:883–890

    Article  CAS  PubMed  Google Scholar 

  44. Matsui K, Hasegawa J, Tachibana M (2001) Modulation of excitatory synaptic transmission by GABAC receptor-mediated feedback in the mouse inner retina. J Neurophysiol 86:2285–2298

    CAS  PubMed  Google Scholar 

  45. Denter DG, Heck N, Riedemann T et al (2010) GABAC receptors are functionally expressed in the intermediate zone and regulate radial migration in the embryonic mouse neocortex. Neuroscience 167:124–134

    Article  CAS  PubMed  Google Scholar 

  46. Harvey VL, Duguid IC, Krasel C et al (2006) Evidence that GABA ρ subunits contribute to functional ionotropic GABA receptors in mouse cerebellar Purkinje cells. J Physiol (Lond) 577:127–139

    Article  CAS  Google Scholar 

  47. Schlicker K, Boller M, Schmidt M (2004) GABAC receptor mediated inhibition in acutely isolated neurons of the rat dorsal lateral geniculate nucleus. Brain Res Bull 63:91–97

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt M, Boller M, Ozen G et al (2001) Disinhibition in rat superior colliculus mediated by GABAC receptors. J Neurosci 21:691–699

    CAS  PubMed  Google Scholar 

  49. Nakayama Y, Hattori N, Otani H et al (2006) γ-aminobutyric acid (GABA)-C receptor stimulation increases prolactin (PRL) secretion in cultured rat anterior pituitary cells. Biochem Pharmacol 71:1705–1710

    Article  CAS  PubMed  Google Scholar 

  50. Krehan D, Frølund B, Krogsgaard-Larsen P et al (2003) Phosphinic, phosphonic and seleninic acid bioisosteres of isonipecotic acid as novel and selective GABAC receptor antagonists. Neurochem Int 42:561–565

    Article  CAS  PubMed  Google Scholar 

  51. Chebib M, Vandenberg RJ, Froestl W et al (1997) Unsaturated phosphinic analogues of γ-aminobutyric acid as GABAC receptor antagonists. Eur J Pharmacol 329:223–229

    CAS  PubMed  Google Scholar 

  52. Froestl W, Mickel SJ, Von Sprecher G et al (1995) Phosphinic acid analogues of GABA 2. Selective, orally active GABAB antagonists. J Med Chem 38:3313–3331

    Article  CAS  PubMed  Google Scholar 

  53. Froestl W, Gallagher M, Jenkins H et al (2004) SGS742: the first GABAB receptor antagonist in clinical trials. Biochem Pharmacol 68:1479–1487

    Article  CAS  PubMed  Google Scholar 

  54. Chebib M, Johnston GAR, Hanrahan JR (2003) Neurologically active compounds. WO Patent 03/045897-A1

  55. Chebib M, Kumar RJ, Johnston GAR (2006) Neurologically active compounds. WO Patent:2006/000043

  56. Krogsgaard-Larsen P, Frolund B, Liljefors T et al (2004) GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 68:1573–1580

    Article  CAS  PubMed  Google Scholar 

  57. Ebert B, Anderson NJ, Cremers TI et al (2008) Gaboxadol—a different hypnotic profile with no tolerance to sleep EEG and sedative effects after repeated daily dosing. Pharmacol Biochem Behav 90:113–122

    Article  CAS  PubMed  Google Scholar 

  58. Ebert B, Madsen TM (2009) Use of gaboxadol for the manufacture of a medicament for treat stress-mediated depression. WO Patent:2009/021521

  59. Ebert B, Whiting PJ, Krogsgaard-Larsen P et al (1994) Molecular pharmacology of γ-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different α, β, and γ receptor subunit combinations. Mol Pharmacol 46:957–963

    CAS  PubMed  Google Scholar 

  60. Brown N, Kerby J, Bonnert TP et al (2002) Pharmacological characterization of a novel cell line expressing human alpha(4)beta(3)delta GABAA receptors. Br J Pharmacol 136:965–974

    Article  CAS  PubMed  Google Scholar 

  61. Mortensen M, Ebert B, Wafford K et al (2010) Distinct activities of GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J Physiol (Lond) 588:1251–1268

    Article  CAS  Google Scholar 

  62. Krehan D, Frølund B, Ebert B et al (2003) Aza-THIP and related analogues of THIP as GABAC antagonists. Bioorg Med Chem 11:4891–4896

    Article  CAS  PubMed  Google Scholar 

  63. Faulhaber J, Steiger A, Lancel M (1997) The GABAA agonist THIP produces slow wave sleep and reduces spindling activity in NREM sleep in humans. Psychopharmacology (Berl) 130:285–291

    Article  CAS  Google Scholar 

  64. Zorn SH, Enna SJ (1987) The GABA agonist THIP attentuates antinociception in the mouse by modifying central cholinergic transmission. Neuropharmacology 26:433–437

    Article  CAS  PubMed  Google Scholar 

  65. Zhang J, Xue F, Chang Y (2008) Structural determinants for antagonist pharmacology that distinguish the ρ1 GABAC receptor from GABAA receptors. Mol Pharmacol 74:941–951

    Article  CAS  PubMed  Google Scholar 

  66. Harrison NJ, Lummis SC (2006) Molecular modeling of the GABAC receptor ligand-binding domain. J Mol Mod 12:317–324

    Article  CAS  Google Scholar 

  67. Osolodkin DI, Chupakhin VI, Palyulin VA et al (2009) Molecular modeling of ligand-receptor interactions in GABAC receptor. J Mol Graph Model 27:813–821

    Article  CAS  PubMed  Google Scholar 

  68. Adamian L, Gussin HA, Tseng YY et al (2009) Structural model of ρ1 GABAC receptor based on evolutionary analysis: testing of predicted protein-protein interactions involved in receptor assembly and function. Protein Sci 18:2371–2383

    Article  CAS  PubMed  Google Scholar 

  69. Crittenden DL, Park A, Qiu J et al (2006) Enantiomers of cis-constrained and flexible 2-substituted GABA analogues exert opposite effects at recombinant GABAC receptors. Bioorg Med Chem 14:447–455

    Article  CAS  PubMed  Google Scholar 

  70. Hinton T, Chebib M, Johnston GA (2008) Enantioselective actions of 4-amino-3-hydroxybutanoic acid and (3-amino-2-hydroxypropyl)methylphosphinic acid at recombinant GABAC receptors. Bioorg Med Chem Lett 18:402–404

    Article  CAS  PubMed  Google Scholar 

  71. Morris K, Moorefield CN, Amin J (1999) Differential modulation of the γ-aminobutyric acid type C receptor by neuroactive steroids. Mol Pharmacol 56:752–759

    CAS  PubMed  Google Scholar 

  72. Li W, Jin X, Covey DF et al (2007) Neuroactive steroids and human recombinant ρ1 GABAC receptors. J Pharmacol Exp Ther 323:236–247

    Article  CAS  PubMed  Google Scholar 

  73. Belelli D, Pau D, Cabras G et al (1999) A single amino acid confers barbiturate sensitivity upon the GABA ρ(1) receptor. Br J Pharmacol 127:601–604

    Article  CAS  PubMed  Google Scholar 

  74. Amin J (1999) A single hydrophobic residue confers barbiturate sensitivity to γ-aminobutyric acid type C receptor. Mol Pharmacol 55:411–423

    CAS  PubMed  Google Scholar 

  75. Walters RJ, Hadley SH, Morris KDW et al (2000) Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nat Neurosci 3:1274–1281

    Article  CAS  PubMed  Google Scholar 

  76. Ochoa-de la Paz LD, Martinez-Davila IA, Miledi R et al (2008) Modulation of human GABA ρ1 receptors by taurine. Neurosci Res 61:302–308

    Article  CAS  PubMed  Google Scholar 

  77. Thomet U, Baur R, Dodd RH et al (2000) Loreclezole as a simple functional marker for homomeric ρ type GABAC receptors. Eur J Pharmacol 408:R1–R2

    Article  CAS  PubMed  Google Scholar 

  78. Wingrove PB, Wafford KA, Bain C et al (1994) The modulatory action of loreclezole at the γ-aminobutyric acid type a receptor is determined by a single amino acid in the β2 and β3 subunit. Proc Natl Acad Sci USA 91:4569–4573

    Article  CAS  PubMed  Google Scholar 

  79. Xie A, Song X, Ripps H et al (2008) Cyclothiazide: a subunit-specific inhibitor of GABAC receptors. J Physiol (Lond) 586:2743–2752

    Article  CAS  Google Scholar 

  80. Deng L, Chen G (2003) Cyclothiazide potently inhibits γ-aminobutyric acid type A receptors in addition to enhancing glutamate responses. Proc Natl Acad Sci USA 100:13025–13029

    Article  CAS  PubMed  Google Scholar 

  81. Goutman JD, Waxemberg MD, Donate-Oliver F et al (2003) Flavonoid modulation of ionic currents mediated by GABAA and GABAC receptors. Eur J Pharmacol 461:79–87

    Article  CAS  PubMed  Google Scholar 

  82. Campbell EL, Chebib M, Johnston GAR (2004) The dietary flavonoids apigenin and (-)-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochem Pharmacol 68:1631–1638

    Article  CAS  PubMed  Google Scholar 

  83. Huang SH, Duke RK, Chebib M et al (2006) Mixed antagonistic effects of bilobalide at ρ1 GABAC receptor. Neuroscience 137:607–617

    Article  CAS  PubMed  Google Scholar 

  84. Carland JE, Johnston GAR, Chebib M (2008) Relative impact of residues at the intracellular and extracellular ends of the human GABAC ρ1 receptor M2 domain on picrotoxinin activity. Eur J Pharmacol 580:27–35

    Article  CAS  PubMed  Google Scholar 

  85. Mihic SJ, Harris RA (1996) Inhibition of ρ1 receptor GABAergic currents by alcohols and volatile anesthetics. J Pharmacol Exp Ther 277:411–416

    CAS  PubMed  Google Scholar 

  86. Krasowski MD, Finn SE, Ye Q et al (1998) Trichloroethanol modulation of recombinant GABAA, glycine and GABA ρ1 receptors. J Pharmacol Exp Ther 284:934–942

    CAS  PubMed  Google Scholar 

  87. Wallner M, Hanchar HJ, Olsen RW (2003) Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta γ-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc Natl Acad Sci USA 100:15218–15223

    Article  CAS  PubMed  Google Scholar 

  88. Wei W, Faria LC, Mody I (2004) Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J Neurosci 24:8379–8382

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham A. R. Johnston.

Additional information

Special issue article in honour of Dr. Abel Lajtha.

The authors are pleased to honour Abel Lajtha for his expert stewardship of this journal since its inception and his generous assistance to many Australian neurochemists.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, G.A.R., Chebib, M., Hanrahan, J.R. et al. Neurochemicals for the Investigation of GABAC Receptors. Neurochem Res 35, 1970–1977 (2010). https://doi.org/10.1007/s11064-010-0271-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0271-7

Keywords

Navigation