Skip to main content
Log in

Early Regional Response of Apoptotic Activity in Newborn Piglet Brain Following Hypoxia and Ischemia

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Responses of selected neuroregulatory proteins that promote (Caspase 3 and Bax) or inhibit (Bcl-2, high Bcl-2/Bax ratio) apoptotic cell death were measured in the brain of piglets subjected to precisely controlled hypoxic and ischemic insults: 1 h hypoxia (decreasing FiO2 from 21 to 6%) or ischemia (ligation of carotid arteries and hemorrhage), followed by 0, 2 and 4 h recovery with 21% FiO2. Protein expression was measured in cortex, hippocampus and striatum by Western blot. There were no significant differences in expression of Caspase-3 between sham operated, hypoxic and ischemic groups. There were significant regional differences in expression of Bcl-2 and Bax in response to hypoxia and ischemia. The changes in Bcl-2/Bax ratio were similar for hypoxia and ischemia except for striatum at zero time recovery, with ischemia giving lower ratios than hypoxia. The Bcl-2/Bax ratio was also lower for the striatum than for the other regions of the brain, suggesting this region is the more susceptible to apoptotic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Miyamoto O, Auer RN (2000) Hypoxia, hyperoxia, ischemia, and brain necrosis. Neurology 54:362–371

    CAS  PubMed  Google Scholar 

  2. Vannucci RC (1990) Current and potentially new management strategies for perinatal hypoxic-ischemic encephalopathy. Pediatrics 85:961–968

    CAS  PubMed  Google Scholar 

  3. Bottiger BW, Schmitz B, Wiessner C et al (1998) Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cerebr Blood Flow Metab 18:1077–1087

    Article  CAS  Google Scholar 

  4. Cheng Y, Deshumukh M, Costa MD (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101:1992–1999

    Article  CAS  PubMed  Google Scholar 

  5. Ishimaru MJ, Ikonomidou C, Tenkova TI et al (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurobiol 408:461–476

    Article  CAS  Google Scholar 

  6. Taylor DL, Edwards D, Mehmet H (1999) Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 9:93–117

    Article  CAS  PubMed  Google Scholar 

  7. Lo AC, Houenou LJ, Oppenheim RW (1995) Apoptosis in the nervous system: morphological features, methods, pathology, and prevention. Arch Histol Cytol 58:139–149

    Article  CAS  PubMed  Google Scholar 

  8. MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab 17:815–832

    Article  CAS  PubMed  Google Scholar 

  9. Rosenbaum DM, Michaelson M, Batter DK et al (1994) Evidence for hypoxia induced programmed cell death of cultures neurons. Ann Neurol 36:864–870

    Article  CAS  PubMed  Google Scholar 

  10. Thomaidou D, Mione MC, Cavanagh JFR et al (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17:1075–1085

    CAS  PubMed  Google Scholar 

  11. Yue X, Mehmet H, Penrice J et al (1997) Apoptosis and necrosis in the newborn piglet brain following transient cerebral hypoxia-ischaemia. Neuropathol Appl Neurobiol 23:16–25

    Article  CAS  PubMed  Google Scholar 

  12. Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 93:13445–13452

    Article  CAS  PubMed  Google Scholar 

  13. Blagosklonny MV, Giannakakou P, el-Deiry WS et al (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 57:130–135

    CAS  PubMed  Google Scholar 

  14. Botwell D, Sambrook J (2003) DNA microarrays: a molecular cloning manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 712–720

    Google Scholar 

  15. Brady HJ, Gil-Gomez G (1998) Bax. The pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol 30:647–650

    Article  CAS  PubMed  Google Scholar 

  16. Martin LJ, Brambrink A, Koehler RC et al (1997) Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia. J Comp Neurol 377:262–285

    Article  CAS  PubMed  Google Scholar 

  17. Johnston MV (1998) Selective vulnerability in the neonatal brain. Ann Neurol 44:155–156

    Article  CAS  PubMed  Google Scholar 

  18. Raff MC, Barres BA, Burne JF et al (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700

    Article  CAS  PubMed  Google Scholar 

  19. Mehmet H, Yue X, Squier MV et al (1994) Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci Lett 181:121–125

    Article  CAS  PubMed  Google Scholar 

  20. Kurth CD, Priestly M, Golden J et al (1999) Regional patterns of neuronal death after deep hypothermic arrest. J Thoracic Cardiovasc Surg 118:1068–1077

    Article  CAS  Google Scholar 

  21. Vinogradov SA, Fernandez-Seara MA, Dugan BW et al (2001) Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples. Rev Sci Inst 72:3396–3406

    Article  CAS  Google Scholar 

  22. Wilson DF, Lee WMF, Makonnen S, Finikova O, Apreleva S, Vinogradov SA (2006) Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle. J Appl Physiol 101:1648–1656

    Article  CAS  PubMed  Google Scholar 

  23. Vinogradov SA, Lo LW, Wilson DF (1999) Dendritic polyglutamic porphyrins: Probing porphyrin protection by oxygen-dependent quenching of phosphorescence. Chem Eur J 5:1338–1347

    Article  CAS  Google Scholar 

  24. Rietveld IB, Kim E, Vinogradov SA (2003) Dendrimers with tetrabenzoporphyrin cores: near infrared phosphors for in vivo oxygen imaging. Tetrahedron 59:3821–3831

    Article  CAS  Google Scholar 

  25. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  26. Ness JM, Harvey CA, Strasser A et al (2006) Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia. Brain Res 1099:150–159

    Article  CAS  PubMed  Google Scholar 

  27. Gibson ME, Han BH, Choi J et al (2001) BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med 7:644–655

    CAS  PubMed  Google Scholar 

  28. Martinou JC, Frankowski H, Missotten M et al (1994) Bcl-2 and neuronal selection during development of the nervous system. J Physiol 88:209–211

    CAS  Google Scholar 

  29. Kitagawa K, Matsumoto M, Yang G et al (1998) Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: evaluation of the patency of the posterior communicating artery. J Cereb Blood Flow Metab 18:570–579

    Article  CAS  PubMed  Google Scholar 

  30. Lawrence MS, Ho DY, Sun GH et al (1996) Overexpression of Bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. J Neurosci 16:486–496

    CAS  PubMed  Google Scholar 

  31. Marin MC, Fernandez A, Bick RJ et al (1996) Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca2+. Oncogene 12:2259–2266

    CAS  PubMed  Google Scholar 

  32. Golstein P (1997) Controlling cell death. Science 275:1081–1092

    Article  CAS  PubMed  Google Scholar 

  33. Reed JC, Jurgensmeier JM, Matsuyama S (1998) Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366:127–137

    Article  CAS  PubMed  Google Scholar 

  34. Gillardon F, Lenz C, Waschke KF et al (1996) Altered expression of Bcl-2, Bcl-X, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res 40:254–260

    Article  CAS  PubMed  Google Scholar 

  35. Krajewski S, Mai JK, Krajewska M et al (1995) Upregulation of bax protein levels in neurons following cerebral ischemia. J Neurosci 15:6364–6376

    CAS  PubMed  Google Scholar 

  36. Gillardon F, Wickert H, Zimmermann M (1995) Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neurosci Lett 192:85–88

    Article  CAS  PubMed  Google Scholar 

  37. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  CAS  PubMed  Google Scholar 

  38. Fritz KI, Zubrow AB, Ashraf QM et al (2003) The effect of hypocapnia (PaCO2 27 mmHg) on CaM kinase IV activity, Bax/Bcl-2 protein expression and DNA fragmentation in the cerebral cortex of newborn piglets. Neurosci Lett 352:211–215

    Article  CAS  PubMed  Google Scholar 

  39. Ravishankar S, Ashraf QM, Fritz K et al (2001) Expression of Bax and Bcl-2 proteins during hypoxia in cerebral cortical neuronal nuclei of newborn piglets: effect of administration of magnesium sulfate. Brain Res 901:23–29

    Article  CAS  PubMed  Google Scholar 

  40. Jean D, Harbison M, McConkey DJ et al (1998) CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 273:24884–24890

    Article  CAS  PubMed  Google Scholar 

  41. Riccio A, Ahn S, Davenport CM et al (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361

    Article  CAS  PubMed  Google Scholar 

  42. Somers JP, DeLoia JA, Zeleznik AJ (1999) Adenovirus-directed expression of a nonphosphorylatable mutant of CREB (cAMP response element-binding protein) adversely affects the survival, but not the differentiation, of rat granulosa cells. Mol Endocrinol 13:1364–1372

    Article  CAS  PubMed  Google Scholar 

  43. Walton M, Sirimanne E, Williams C et al (1996) The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res Mol Brain Res 43:21–29

    Article  CAS  PubMed  Google Scholar 

  44. Hu SC, Chrivia J, Ghosh A (1999) Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22:799–808

    Article  CAS  PubMed  Google Scholar 

  45. Irving EA, Barone FC, Reith AD et al (2000) Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res 77:65–75

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka K, Nogawa S, Nagata E et al (1999) Temporal profile of CREB phosphorylation after focal ischemia in rat brain. Neuroreport 10:2245–2250

    Article  CAS  PubMed  Google Scholar 

  47. Zirpel L, Janowiak MA, Veltri CA et al (2000) AMPA receptor-mediated, calcium-dependent CREB phosphorylation in a subpopulation of auditory neurons surviving activity deprivation. J Neurosci 20:6267–6275

    CAS  PubMed  Google Scholar 

  48. Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273:32377–32379

    Article  CAS  PubMed  Google Scholar 

  49. Mantamadiotis T, Lemberger T, Bleckmann SC et al (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka K, Nogawa S, Nagata E et al (2000) Persistent CREB phosphorylation with protection of hippocampal CA1 pyramidal neurons following temporary occlusion of the middle cerebral artery in the rat. Exp Neurol 161:462–471

    Article  CAS  PubMed  Google Scholar 

  51. Zaitseva T, Creed J, Antoni D et al (2005) CREB phosphorylation following hypoxia and ischemia in striatum of newborn piglets: possible role of dopamine. Brain Res 1040:169–177

    Article  CAS  PubMed  Google Scholar 

  52. Delivoria-Papadopoulos M, Ashraf QM, Mishra OP (2007) Differential expression of apoptotic proteins following hypoxia-induced CREB phosphorylation in the cerebral cortex of newborn piglets. Neurochem Res 32:1256–1263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by Grants NS-31465, HL058669, and HL081273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pastuszko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirzadeh, A., Mammen, A., Kubin, J. et al. Early Regional Response of Apoptotic Activity in Newborn Piglet Brain Following Hypoxia and Ischemia. Neurochem Res 36, 83–92 (2011). https://doi.org/10.1007/s11064-010-0267-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0267-3

Keywords

Navigation