Skip to main content
Log in

Chronic, but Not Acute Morphine Treatment, Up-regulates α-Ca2+/calmodulin Dependent Protein Kinase II Gene Expression in Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effects of acute and chronic morphine treatments on the expression of Ca2+/calmodulin dependent protein kinase II (CaMK II) gene in rat brain were investigated using in situ hybridization histochemistry. Our data showed that repeated, but not single morphine administration, resulted in significant up-regulation of the α-CaMK II gene expression in hippocampus and frontal cortex. We further studied the time courses of α-CaMK II gene expression in response to repeated morphine administration. After 3 days of consecutive morphine injections, the α-CaMK II mRNA levels exhibited a trend of up-regulation, and after 6 days of consecutive morphine injections it increased over 50–60% as compared with the control group. The α-CaMK II mRNA levels remained high 24 h after the cessation of chronic morphine treatment and returned to the control level 72 h later. However, changes of α-CaMK II gene levels mentioned above were not detected in amygdala or piriform cortex. Taken together, our data demonstrate that chronic morphine treatment region-specific up-regulates the levels of the α-CaMK II gene expression in hippocampus and frontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Narita M, Funada M, Suzuki T (2001) Regulations of opioid dependence by opioid receptor types. Pharmacol Ther 89(1):1–15

    Article  PubMed  CAS  Google Scholar 

  2. Kieffer BL, Gaveriaux-Ruff C (2002) Exploring the opioid system by gene knockout. Prog Neurobiol 66(5):285–306

    Article  PubMed  CAS  Google Scholar 

  3. Nestler EJ (2004) Historical review: molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol Sci 25(4):210–218

    Article  PubMed  CAS  Google Scholar 

  4. Kreek MJ (2001) Drug addictions. Molecular and cellular endpoints. Ann N Y Acad Sci 937:27–49

    PubMed  CAS  Google Scholar 

  5. Nestler EJ (1997) Molecular mechanisms of opiate and cocaine addiction. Curr Opin Neurobiol 7(5):713–719

    Article  PubMed  CAS  Google Scholar 

  6. McClung CA, Nestler EJ (2008) Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33(1):3–17

    Article  PubMed  CAS  Google Scholar 

  7. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    Article  PubMed  CAS  Google Scholar 

  8. Hudmon A, Schulman H (2002) Structure–function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364(Pt 3):593–611

    Article  PubMed  CAS  Google Scholar 

  9. Yamauchi T (2005) Neuronal Ca2+/calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull 28(8):1342–1354

    Article  PubMed  CAS  Google Scholar 

  10. Wickelgren I (1998) Teaching the brain to take drugs. Science 280(5372):2045–2046

    Article  PubMed  CAS  Google Scholar 

  11. Marek P, Ben-Eliyahu S, Gold M, Liebeskind JC (1991) Excitatory amino acid antagonists (kynurenic acid and MK-801) attenuate the development of morphine tolerance in the rat. Brain Res 547(1):77–81

    Article  PubMed  CAS  Google Scholar 

  12. Trujillo KA, Akil H (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251(4989):85–87

    Article  PubMed  CAS  Google Scholar 

  13. Hamdy MM, Noda Y, Miyazaki M, Mamiya T, Nozaki A, Nitta A, Sayed M, Assi AA, Gomaa A, Nabeshima T (2004) Molecular mechanisms in dizocilpine-induced attenuation of development of morphine dependence: an association with cortical Ca2+/calmodulin-dependent signal cascade. Behav Brain Res 152(2):263–270

    Article  PubMed  CAS  Google Scholar 

  14. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):206–211

    Article  PubMed  CAS  Google Scholar 

  15. Lisman J (1994) The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 17(10):406–412

    Article  PubMed  CAS  Google Scholar 

  16. Wolfman C, Fin C, Dias M, Bianchin M, Da Silva RC, Schmitz PK, Medina JH, Izquierdo I (1994) Intrahippocampal or intraamygdala infusion of KN62, a specific inhibitor of calcium/calmodulin-dependent protein kinase II, causes retrograde amnesia in the rat. Behav Neural Biol 61(3):203–205

    Article  PubMed  CAS  Google Scholar 

  17. Lou L, Zhou T, Wang P, Pei G (1999) Modulation of Ca2+/calmodulin-dependent protein kinase II activity by acute and chronic morphine administration in rat hippocampus: differential regulation of alpha and beta isoforms. Mol Pharmacol 55(3):557–563

    PubMed  CAS  Google Scholar 

  18. Fan GH, Wang LZ, Qiu HC, Ma L, Pei G (1999) Inhibition of calcium/calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence. Mol Pharmacol 56(1):39–45

    PubMed  CAS  Google Scholar 

  19. Lu L, Zeng S, Liu D, Ceng X (2000) Inhibition of the amygdala and hippocampal calcium/calmodulin-dependent protein kinase II attenuates the dependence and relapse to morphine differently in rats. Neurosci Lett 291(3):191–195

    Article  PubMed  CAS  Google Scholar 

  20. Landry M, Roche D, Angelova E, Calas A (1997) Expression of galanin in hypothalamic magnocellular neurones of lactating rats: co-existence with vasopressin and oxytocin. J Endocrinol 155(3):467–481

    Article  PubMed  CAS  Google Scholar 

  21. Burgin KE, Waxham MN, Rickling S, Westgate SA, Mobley WC, Kelly PT (1990) In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J Neurosci 10(6):1788–1798

    PubMed  CAS  Google Scholar 

  22. Ouimet CC, McGuinness TL, Greengard P (1984) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci USA 81(17):5604–5608

    Article  PubMed  CAS  Google Scholar 

  23. Boehm J, Malinow R (2005) AMPA receptor phosphorylation during synaptic plasticity. Biochem Soc Trans 33(Pt 6):1354–1356

    PubMed  CAS  Google Scholar 

  24. Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE, Terwilliger EF, Cha JH, Pierce RC (2008) CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 11:344–353

    Google Scholar 

  25. Ahmed BY, Yamaguchi F, Tsumura T, Gotoh T, Sugimoto K, Tai Y, Konishi R, Kobayashi R, Tokuda M (2000) Expression and subcellular localization of multifunctional calmodulin-dependent protein kinases-I, -II and -IV are altered in rat hippocampal CA1 neurons after induction of long-term potentiation. Neurosci Lett 290(2):149–153

    Article  PubMed  CAS  Google Scholar 

  26. Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10(3):201–217

    Article  PubMed  CAS  Google Scholar 

  27. Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):201–206

    Article  PubMed  CAS  Google Scholar 

  28. Tan SE, Liang KC (1997) Inhibitory avoidance learning alters the amygdala calcium/calmodulin-dependent protein kinase II activity in rats. Brain Res 748(1–2):227–233

    Article  PubMed  CAS  Google Scholar 

  29. Liang D, Li X, Clark JD (2004) Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure. Neuroscience 123(3):769–775

    Article  PubMed  CAS  Google Scholar 

  30. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280(5371):1940–1942

    Article  PubMed  CAS  Google Scholar 

  31. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367

    Article  PubMed  CAS  Google Scholar 

  32. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shiduo Lu, Renhao Xue, Yan Liu, Yuqiu Zhang, Yanqing Wang, and Xiu Gao for their technical help. This work was supported in part by grants from the Ministries of Science and Technology and Education (2003CB515405/2005CB522406/PCSIRT), and Shanghai Municipal Commissions for Science and Technology and Education (06JC14008/SLADP B119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Ma.

Additional information

Special issue in honor of Dr. Ji-Sheng Han.

Yuejun Chen, Yan Jiang, Wen Yue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Jiang, Y., Yue, W. et al. Chronic, but Not Acute Morphine Treatment, Up-regulates α-Ca2+/calmodulin Dependent Protein Kinase II Gene Expression in Rat Brain. Neurochem Res 33, 2092–2098 (2008). https://doi.org/10.1007/s11064-008-9690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9690-0

Keywords

Navigation