Skip to main content
Log in

Axonopathy-Inducing 1,2-Diacetylbenzene Forms Adducts with Motor and Cytoskeletal Proteins Required for Axonal Transport

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aromatic hydrocarbon 1,2-diacetylbenzene (1,2-DAB) is a protein-reactive γ-diketone metabolite of the neurotoxic solvent 1,2-diethylbenzene (1,2-DEB). The effect of neurotoxic 1,2-DAB and its non-neurotoxic isomer 1,3-DAB has been studied on motor proteins and cytoskeletal proteins of rat spinal cord (SC). For in vitro studies, SC slices were incubated with 1, 2, 5, 10 mM of DAB isomers for 30 min at 37°C. For in vivo studies, rats received (i.p.) 20 mg/kg/day of 1,2-DAB or 1,3-DAB, or vehicle (2% acetone in saline), 5 days a week for 2 weeks. Spinal cord and sciatic nerve proteins were subjected to Western blotting using monoclonal mouse antibodies to NF-M, kinesin, dynein, and tau. Proteins were quantified and paired mean comparisons performed to assess concentration-dependent changes in native protein bands. In vitro, 1,2-DAB produced a concentration-dependent decrease of motor and cytoskeletal proteins. While dynein and tau appeared similarly affected by 1,2-DAB, kinesin was most affected by the toxicant. In vivo, 1,2-DAB affected motor and cytoskeletal proteins of sciatic nerves and spinal cord differentially. In general, sciatic nerve proteins were much more affected than spinal cord proteins. The results show that motor proteins that drive axonal transport anterogradely (kinesin) and retrogradely (dynein), cytoskeletal protein NF-M, which is slowly transported in the anterograde direction, and microtubule-associated protein, tau, which is involved in axonal transport, are differentially impacted by 1,2-DAB. By contrast, non-neurotoxic isomer 1,3-diacetylbenzene (1,3-DAB), had no adverse effect on neural proteins either in vitro or in vivo. 2D-Differential in gel electrophoresis (2D-DIGE) of sciatic nerves from neurotoxic 1,2-DAB and non-neurotoxic 1,3-DAB treated rats revealed 197 and 304 protein spots, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anthony DC, Boekelheide K, Anderson CW, Graham DG (1983a) The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerates pyrrole formation and protein crosslinking. Toxicol Appl Pharmacol 71:372–382

    Article  CAS  PubMed  Google Scholar 

  2. Anthony DC, Giangaspero F, Graham DG (1983b) The spatio-temporal pattern of the axonopathy associated with the neurotoxicity of 3,4-dimethyl-2,5-hexanedione in the rat. J Neuropathol Exp Neurol 42:548–560

    CAS  PubMed  Google Scholar 

  3. Cavender F (1994) Aromatic hydrocarbons. In: Clayton DE, Clayton FE (eds) Patty’s industrial hygiene and toxicology, 4th edn. Wiley, New York, vol IIB, p 1301

  4. DeCaprio AP (2000) n-Hexane, metabolites and derivatives. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicology. Oxford, New York, NY, pp 633–648

  5. deSousa BN, Horrocks LA (1979) Development of rat spinal cord. I. Weight and length, with a method for rapid removal. Dev Neurosci 2:115–121

    Google Scholar 

  6. Gagnaire F, Becker MN, De Ceaurriz J (1992a) Alteration of brainstem auditory evoked potentials in diethylbenzene- and diacetylbenzene-treated rats. J Appl Toxicol 12:343–350

    Article  CAS  PubMed  Google Scholar 

  7. Gagnaire F, Becker MN, Marignac B, Bonnet P, De Ceaurriz J (1992b) Diethylbenzene inhalation-induced electrophysiological deficits in peripheral nerves and changes in brainstem auditory evoked potentials in rats. J Appl Toxicol 12:335–342

    Article  CAS  PubMed  Google Scholar 

  8. Gagnaire F, Ensminger A, Marignac B, De Ceaurriz J (1991) Possible involvement of 1,2-diacetylbenzene in diethylbenzene-induced neuropathy in rats. J Appl Toxicol 11:261–268

    Article  CAS  PubMed  Google Scholar 

  9. Gagnaire F, Marignac B, de Ceaurriz J (1990) Diethylbenzene-induced sensorimotor neuropathy in rats. J Appl Toxicol 10:105–112

    Article  CAS  PubMed  Google Scholar 

  10. Graham DG (1995) Pathogenetic studies of hexane and carbon disulfide neurotoxicity. CRC Crit Rev Toxicol 25:91–112

    CAS  Google Scholar 

  11. Graham DG (1999) Neurotoxicants and the cytoskeleton. Curr Opin Neurol 12:733–737

    Article  CAS  PubMed  Google Scholar 

  12. Graham DG, Szakal-Quin G, Priest JF, Anthony DC (1984) In vitro evidence that covalent crosslinking of neurofilaments occurs in gamma-diketone neuropathy. Proc Natl Acad Sci USA 81:4979–4982

    Article  CAS  PubMed  Google Scholar 

  13. Hirokawa N, Takemura R (2003) Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem Sci 28:558–565

    Article  CAS  PubMed  Google Scholar 

  14. Hoffman PN, Lasek RJ (1975) The slow component of axonal transport: identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66:351–366

    Article  CAS  PubMed  Google Scholar 

  15. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  16. Kim MS, Hashemi SB, Spencer PS, Sabri MI (2002) Amino acid and protein targets of 1,2-diacetylbenzene, a potent aromatic γ-diketone that induces proximal neurofilamentous axonopathy. Toxicol Appl Pharmacol 183:55–65

    Article  CAS  PubMed  Google Scholar 

  17. Kim MS, Kayton RJ, Muniz J, Austin DR, Spencer PS, Sabri MI (1999) 1,2-diacetylbenzene neurotoxicity: a model to study the role of Schwann cells in maintenance of axonal integrity in toxic states. Microsc Microanal 5:1218–1219

    Google Scholar 

  18. Kim MS, Sabri MI, Miller VH, Kayton RJ, Dixon DA, Spencer PS (2001) 1,2-diacetylbenzene, the neurotoxic metabolite of a chromogenic aromatic organic solvent, induces proximal axonopathy. Toxicol Appl Pharmacol 177:121–131

    Article  CAS  PubMed  Google Scholar 

  19. Krapfenbauer K, Fountoulakis M, Lubec G (2003) A rat brain protein expression map including cytosolic and enriched mitochondrial and microsomal fractions. Electrophoresis 24:1847–1870

    Article  CAS  PubMed  Google Scholar 

  20. Lehning EJ, Dyer KS, Jortner BS, LoPachin RM (1995) Axonal atrophy is a specific component of 2,5-hexanedione peripheral neuropathy. Toxicol Appl Pharmacol 135:58–66

    Article  CAS  PubMed  Google Scholar 

  21. Lehning EJ, Jortner BS, Fox JH, Arezzo JC, Kitano T, LoPachin RM (2000) γ-diketone peripheral neuropathy. I. Quantitative morphometric analyses of axonal atrophy and swelling. Toxicol Appl Pharmacol 165:127–140

    Article  CAS  PubMed  Google Scholar 

  22. LoPachin RM (2000) Redefining toxic distal axonopathies. Toxicol Lett 112–113: 23–33

    Article  PubMed  Google Scholar 

  23. LoPachin RM, Lehning EJ (1977) The relevance of axonal swelling and atrophy to γ-diketone neurotoxicity. Neurotoxicology 18:7–28

    Google Scholar 

  24. LoPachin RM, Jortner BS, Reid ML, Das S (2003) γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots. Toxicol Appl Pharmacol 193:29–46

    Article  CAS  PubMed  Google Scholar 

  25. Miller RG (1986) Beyond ANOVA: basics of applied statistics. Chapman & Hall, CRC, New York

    Google Scholar 

  26. Monaco S, Wongmongkolrit T, Shearson CM, Patton A, Schaetzle B, Autilio-Gambett L, Gambetti P, Sayre LM (1990) Giant axonopathy characterized by intermediate location of axonal enlargements and acceleration of neurofilament transport. Brain Res 519:73–81

    Article  CAS  PubMed  Google Scholar 

  27. Payan SJ, Beydon D, Cossec B, Ensminger A, Fabry JP, Ferrari E (1999) Toxicokinetics of 1,2-diethylbenzene in male Sprague-Dawley rats-part 1: excretion and metabolism of [(14)C]1,2-diethylbenzene. Drug Metab Dispos 27:1470–1478

    CAS  PubMed  Google Scholar 

  28. Politis MJ, Pellegrino RG, Spencer PS (1980) Ultrastructural studies of the dying-back process. V. Axonal neurofilaments accumulate at sites of 2,5-hexanedione application: evidence for nerve fibre dysfunction in experimental hexacarbon neuropathy. J Neurocytol 9:505–516

    Article  CAS  PubMed  Google Scholar 

  29. R Development Core Team (2005) R: a language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing, http//www.R-project.org

  30. Sabri MI (1992) Effect of 2,5-hexanedione and 3.4-dimethyl-2,5-hexanedione on retrograde axonal transport in sciatic nerve. Neurochem Res 17:835–839

    Article  CAS  PubMed  Google Scholar 

  31. Sabri MI, Hashemi S, Chohan S, Khalil S, Cranson AB, Tshala-Katumbay DD, Palmer VS, Pounds JG, Spencer PS (2005) A role for stathmin in nerve and testes damage? Soc Toxicol Ann Meet 44:168–168

    Google Scholar 

  32. Sabri MI, Hashemi SB, Spencer PS (2003) Neurotoxicity and reactivity of 1,2-diacetylbenzene (1,2-DAB) with motor and cytoskeletal proteins in rat spinal cord and sciatic nerves. Toxicol Lett 144:s130–s130

    Article  Google Scholar 

  33. Sabri M, Spencer P, Testino A, Sickles D (2006) Selective disruption of kinesin-based microtubule motility by neurotoxic 1,2-diacetylbenzene. Soc. Toxicol, 45th Annual Meeting, Abs.# 2426

  34. Sickles DW (1989) Toxic neurofilamentous axonopathies and anterograde axonal transport. II. The effects of single doses of neurotoxic and non-neurotoxic diketones and β-β′-iminodipropionitrile iminodipropionitrile (IDPN) on the rate and capacity of transport. Neurotoxicology 10:103–111

    CAS  PubMed  Google Scholar 

  35. Spencer PS (2000) Diethylbenzene. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicology, 2nd edn. Oxford, New York, NY, pp 490–492

  36. Spencer PS, Schaumburg HH (1977) Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal degeneration. J Neuropathol Exp Neurol 36:276–299

    Article  CAS  PubMed  Google Scholar 

  37. Thrall KD, Gies RA, Cartmell AM, Wu H, Woodstock AD, Klein JA (2007) The distribution kinetics of 1,2-diethylbenzene and its metabolite, 1,2-diacetylbenzene in the F344 male rat. J Toxicol Environ Health A 70:67–72

    Article  CAS  PubMed  Google Scholar 

  38. Trimpin S, Hsu VL, Spencer PS, Deinzer ML (2006) Time-dependent 2,5-hexanedione-adduction of lysine under physiological conditions: Structure determination, chemical mechanisms and biological implications of isoindolium salt. Org Biomol Chem (under revision)

  39. Tshala-Katumbay DD, Palmer VS, Kayton RJ, Sabri MI, Spencer PS (2005) A new murine model of giant proximal axonopathy. Acta Neuropathol (Berl) 109:405–410

    Article  CAS  Google Scholar 

  40. Zagoren JC, Politis MJ, Spencer PS (1983) Rapid reorganization of the axonal cytoskeleton induced by a gamma diketone. Brain Res 270:162–164

    Article  CAS  PubMed  Google Scholar 

  41. Zhan CG, Dixon DA, Sabri MI, Kim MS, Spencer PS (2002) Theoretical determination of chromophores in the chromogenic effects of aromatic neurotoxicants. J Am Chem Soc 124:2744–2752

    Article  CAS  PubMed  Google Scholar 

  42. Zhan CG, Spencer PS, Dixon DA (2003) Computational insights into the chemical structures and mechanisms of the chromomeric and neurotoxin effects of aromatic γ-diketones. J Phys Chem 107:2853–2861

    CAS  Google Scholar 

  43. Zhu M, Spink DC, Bank S, Chen X, Decaprio AP (1993) Analysis of alkylpyrrole autoxidation products by high-performance liquid chromatography with thermospray mass spectrometry and UV photodiode-array detection. J Chromatogr 628:37–47

    Article  CAS  PubMed  Google Scholar 

  44. Zhu M, Spink DC, Yan B, Bank S, Decaprio AP (1995) Inhibition of 2,5-hexanedione-induced protein crosslinking by biological thiols: chemical mechanisms and toxicological implications. Chem Res Toxicol 8:764–771

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dan Austin for assistance with graphics and Juan Muniz for GC-MS analysis of DAB isomers. This publication was made possible by Grants ES10338 and ES 11384 from the National Institute for Environmental Health Sciences (NIEHS), National Institute of Health (NIH). The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official view of the NIEHS, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Sabri.

Additional information

This paper is dedicated to my long-time friend Naren L. Banik, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabri, M.I., Hashemi, S.B., Lasarev, M.R. et al. Axonopathy-Inducing 1,2-Diacetylbenzene Forms Adducts with Motor and Cytoskeletal Proteins Required for Axonal Transport. Neurochem Res 32, 2152–2159 (2007). https://doi.org/10.1007/s11064-007-9392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9392-z

Keywords

Navigation