Skip to main content

Advertisement

Log in

Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastoma (GBM) is the most aggressive adult brain cancer, with a 15 month median survivorship attributed to the existence of treatment-refractory brain tumor initiating cells (BTICs). In order to better understand the mechanisms regulating the tumorigenic properties of this population, we studied the role of the polycomb group member BMI1 in our patient-derived GBM BTICs and its relationship with CD133, a well-established marker of BTICs.

Methods

Using gain and loss-of-function studies for Bmi1 in neural stem cells (NSCs) and patient-derived GBM BTICs respectively, we assessed in vitro self-renewal and in vivo tumor formation in these two cell populations. We further explored the BMI1 transcriptional regulatory network through RNA sequencing of different GBM BTIC populations that were knocked down for Bmi1.

Results

There is a differential role of BMI1 in CD133-positive cells, notably involving cell metabolism. In addition, we identified pivotal targets downstream of BMI1 in CD133+ cells such as integrin alpha 2 (ITGA2), that may contribute to regulating GBM stem cell properties.

Conclusions

Our work sheds light on the association of three genes with CD133-BMI1 circuitry, their importance as downstream effectors of the BMI1 signalling pathway, and their potential as future targets for tackling GBM treatment-resistant cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alkema MJ, Wiegant J, Raap AK et al (1993) Characterization and chromosomal localization of the human proto-oncogene BMI-1. Hum Mol Genet 2:1597–1603

    Article  CAS  PubMed  Google Scholar 

  2. Bracken AP, Dietrich N, Pasini D et al (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136. https://doi.org/10.1101/gad.381706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sauvageau M, Sauvageau G (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7:299–313. https://doi.org/10.1016/j.stem.2010.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schuringa JJ, Vellenga E (2010) Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr Opin Hematol 17:294–299. https://doi.org/10.1097/MOH.0b013e328338c439

    Article  CAS  PubMed  Google Scholar 

  5. Valk-Lingbeek ME, Bruggeman SWM, van Lohuizen M (2004) Stem cells and cancer; the polycomb connection. Cell 118:409–418. https://doi.org/10.1016/j.cell.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  6. Abdouh M, Facchino S, Chatoo W et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29:8884–8896. https://doi.org/10.1523/JNEUROSCI.0968-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466. https://doi.org/10.1016/j.copbio.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  8. Bruggeman SWM, Hulsman D, Tanger E et al (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12:328–341. https://doi.org/10.1016/j.ccr.2007.08.032

    Article  CAS  PubMed  Google Scholar 

  9. Fasano CA, Dimos JT, Ivanova NB et al (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1:87–99. https://doi.org/10.1016/j.stem.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  10. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260. https://doi.org/10.1038/nature01572

    Article  CAS  PubMed  Google Scholar 

  11. Park I-K, Morrison SJ, Clarke MF (2004) Bmi1, stem cells, and senescence regulation. J Clin Invest 113:175–179. https://doi.org/10.1172/JCI20800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967. https://doi.org/10.1038/nature02060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He S, Iwashita T, Buchstaller J et al (2009) Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol 328:257–272. https://doi.org/10.1016/j.ydbio.2009.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yadirgi G, Leinster V, Acquati S et al (2011) Conditional activation of Bmi1 expression regulates self-renewal, apoptosis, and differentiation of neural stem/progenitor cells in vitro and in vivo. Stem Cells Dayt Ohio 29:700–712. https://doi.org/10.1002/stem.614

    Article  CAS  Google Scholar 

  15. Haupt Y, Alexander WS, Barri G et al (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. Cell 65:753–763

    Article  CAS  PubMed  Google Scholar 

  16. van Lohuizen M, Verbeek S, Scheijen B et al (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752

    Article  PubMed  Google Scholar 

  17. Chiba T, Miyagi S, Saraya A et al (2008) The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res 68:7742–7749. https://doi.org/10.1158/0008-5472.CAN-07-5882

    Article  CAS  PubMed  Google Scholar 

  18. Silva J, García JM, Peña C et al (2006) Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas. Clin Cancer Res Off J Am Assoc Cancer Res 12:6929–6936. https://doi.org/10.1158/1078-0432.CCR-06-0788

    Article  Google Scholar 

  19. Leung C, Lingbeek M, Shakhova O et al (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428:337–341. https://doi.org/10.1038/nature02385

    Article  CAS  PubMed  Google Scholar 

  20. Jacobs JJ, Kieboom K, Marino S et al (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397:164–168. https://doi.org/10.1038/16476

    Article  CAS  Google Scholar 

  21. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071. https://doi.org/10.1158/0008-5472.CAN-06-0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang G, Liu L, Sharma S et al (2012) Bmi-1 confers adaptive radioresistance to KYSE-150R esophageal carcinoma cells. Biochem Biophys Res Commun 425:309–314. https://doi.org/10.1016/j.bbrc.2012.07.087

    Article  CAS  PubMed  Google Scholar 

  23. Merve A, Dubuc AM, Zhang X et al (2014) Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion. Acta Neuropathol Commun 2:10. https://doi.org/10.1186/2051-5960-2-10

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shan Z, Tian R, Zhang M, et al (2016) miR128–1 inhibits the growth of glioblastoma multiforme and glioma stem-like cells via targeting BMI1 and E2F3. Oncotarget 7:78813–78826. https://doi.org/10.18632/oncotarget.12385

    Article  Google Scholar 

  25. Sugihara H, Ishimoto T, Watanabe M et al (2013) Identification of miR-30e* regulation of Bmi1 expression mediated by tumor-associated macrophages in gastrointestinal cancer. PLoS ONE 8:e81839. https://doi.org/10.1371/journal.pone.0081839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gargiulo G, Cesaroni M, Serresi M et al (2013) In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 23:660–676. https://doi.org/10.1016/j.ccr.2013.03.030

    Article  CAS  PubMed  Google Scholar 

  27. Chowdhury M, Mihara K, Yasunaga S et al (2007) Expression of Polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia. Leukemia 21:1116–1122. https://doi.org/10.1038/sj.leu.2404623

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z, Wang Q, Wang L et al (2013) Combined aberrant expression of Bmi1 and EZH2 is predictive of poor prognosis in glioma patients. J Neurol Sci 335:191–196. https://doi.org/10.1016/j.jns.2013.09.030

    Article  CAS  PubMed  Google Scholar 

  29. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115:1503–1521. https://doi.org/10.1172/JCI23412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. https://doi.org/10.1038/nature05236

    Article  CAS  PubMed  Google Scholar 

  31. Qazi MA, Vora P, Venugopal C et al (2016) A novel stem cell culture model of recurrent glioblastoma. J Neurooncol 126:57–67. https://doi.org/10.1007/s11060-015-1951-6

    Article  CAS  PubMed  Google Scholar 

  32. Facchino S, Abdouh M, Chatoo W, Bernier G (2010) BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci Off J Soc Neurosci 30:10096–10111. https://doi.org/10.1523/JNEUROSCI.1634-10.2010

    Article  CAS  Google Scholar 

  33. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128

    Article  CAS  Google Scholar 

  34. Michael LE, Westerman BA, Ermilov AN et al (2008) Bmi1 is required for hedgehog pathway-driven medulloblastoma expansion. Neoplasia 10:1343–1349

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dovey JS, Zacharek SJ, Kim CF, Lees JA (2008) Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proc Natl Acad Sci USA 105:11857–11862. https://doi.org/10.1073/pnas.0803574105

    Article  PubMed  Google Scholar 

  36. Agnihotri S, Munoz D, Zadeh G, Guha A (2011) Brain tumor-initiating cells and cells of origin in glioblastoma. Transl Neurosci 2:331–338. https://doi.org/10.2478/s13380-011-0037-y

    Article  Google Scholar 

  37. Venugopal C, Li N, Wang X et al (2012) Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Res 8:141–153. https://doi.org/10.1016/j.scr.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  38. Chen D, Wu M, Li Y et al (2017) Targeting BMI1+ Cancer Stem Cells Overcomes Chemoresistance and Inhibits Metastases in Squamous Cell Carcinoma. Cell Stem Cell 20:621.e6–634.e6. https://doi.org/10.1016/j.stem.2017.02.003

    Article  CAS  Google Scholar 

  39. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67. https://doi.org/10.1186/1476-4598-5-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Almeida SF, Lunardi Brunetto A, Schwartsmann G et al (2012) Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol 2012:537861. https://doi.org/10.1155/2012/537861

    Article  Google Scholar 

  41. Kong Y, Ai C, Dong F et al (2018) Targeting of BMI-1 with PTC-209 inhibits glioblastoma development. Cell Cycle Georget Tex. https://doi.org/10.1080/15384101.2018.1469872

    Article  Google Scholar 

  42. Badodi S, Dubuc A, Zhang X et al (2017) Convergence of BMI1 and CHD7 on ERK signaling in medulloblastoma. Cell Rep 21:2772–2784. https://doi.org/10.1016/j.celrep.2017.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao R, Wang L, Wang H et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298:1039–1043. https://doi.org/10.1126/science.1076997

    Article  CAS  Google Scholar 

  44. Filbin MG, Tirosh I, Hovestadt V et al (2018) Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360:331–335. https://doi.org/10.1126/science.aao4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jin X, Kim LJY, Wu Q et al (2017) Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med 23:1352–1361. https://doi.org/10.1038/nm.4415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu P-P, Tang G-B, Xu Y-J et al (2017) MiR-203 interplays with polycomb repressive complexes to regulate the proliferation of neural stem/progenitor cells. Stem Cell Rep 9:190–202. https://doi.org/10.1016/j.stemcr.2017.05.007

    Article  CAS  Google Scholar 

  47. Cannon CE, Titchenell PM, Groff DN et al (2014) The Polycomb protein, Bmi1, regulates insulin sensitivity. Mol Metab 3:794–802. https://doi.org/10.1016/j.molmet.2014.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanzey M, Abdul Rahim SA, Oudin A et al (2015) Comprehensive analysis of glycolytic enzymes as therapeutic targets in the treatment of glioblastoma. PLoS ONE 10:e0123544. https://doi.org/10.1371/journal.pone.0123544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koren A, Rijavec M, Kern I et al (2016) BMI1, ALDH1A1, and CD133 transcripts connect epithelial-mesenchymal transition to cancer stem cells in lung carcinoma. Stem Cells Int 2016:9714315. https://doi.org/10.1155/2016/9714315

    Article  CAS  PubMed  Google Scholar 

  50. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zarkoob H, Taube JH, Singh SK et al (2013) Investigating the link between molecular subtypes of glioblastoma, epithelial-mesenchymal transition, and CD133 cell surface protein. PLoS ONE 8:e64169. https://doi.org/10.1371/journal.pone.0064169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263:1281–1284

    Article  CAS  PubMed  Google Scholar 

  53. Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566. https://doi.org/10.1038/nature05945

    Article  CAS  PubMed  Google Scholar 

  54. Kalamatianos T, Denekou D, Stranjalis G, Papadimitriou E (2018) Anaplastic lymphoma kinase in glioblastoma: detection/diagnostic methods and therapeutic options. Recent Patents Anticancer Drug Discov 13:209–223. https://doi.org/10.2174/1574892813666180115151554

    Article  CAS  Google Scholar 

  55. Reddy SP, Britto R, Vinnakota K et al (2008) Novel glioblastoma markers with diagnostic and prognostic value identified through transcriptome analysis. Clin Cancer Res 14:2978–2987. https://doi.org/10.1158/1078-0432.CCR-07-4821

    Article  CAS  PubMed  Google Scholar 

  56. Jin X, Nie E, Zhou X et al (2017) Fstl1 Promotes glioma growth through the BMP4/Smad1/5/8 signaling pathway. Cell Physiol Biochem 44:1616–1628. https://doi.org/10.1159/000485759

    Article  CAS  PubMed  Google Scholar 

  57. Ding W, Fan X-L, Xu X et al (2015) Epigenetic silencing of ITGA2 by MiR-373 promotes cell migration in breast cancer. PLoS ONE 10:e0135128. https://doi.org/10.1371/journal.pone.0135128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ferraro A, Boni T, Pintzas A (2014) EZH2 regulates cofilin activity and colon cancer cell migration by targeting ITGA2 gene. PLoS ONE 9:e115276. https://doi.org/10.1371/journal.pone.0115276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Osuka S, Van Meir EG (2017) Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest 127:415–426. https://doi.org/10.1172/JCI89587

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gardeck AM, Sheehan J, Low WC (2017) Immune and viral therapies for malignant primary brain tumors. Expert Opin Biol Ther 17:457–474. https://doi.org/10.1080/14712598.2017.1296132

    Article  CAS  PubMed  Google Scholar 

  61. Rooj AK, Ricklefs F, Mineo M et al (2017) MicroRNA-mediated dynamic bidirectional shift between the subclasses of glioblastoma stem-like cells. Cell Rep 19:2026–2032. https://doi.org/10.1016/j.celrep.2017.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (PDF 3458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vora, P., Seyfrid, M., Venugopal, C. et al. Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells. J Neurooncol 143, 417–428 (2019). https://doi.org/10.1007/s11060-019-03192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03192-1

Keywords

Navigation