Skip to main content

Advertisement

Log in

The preliminary radiogenomics association between MR perfusion imaging parameters and genomic biomarkers, and their predictive performance of overall survival in patients with glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The radiogenomics association of neovascularization is important for overall survival (OS) in glioblastoma patients and remains unclear. The purpose of this study is to assess the association between MR perfusion imaging derived parameters and genomic biomarkers of glioblastoma, and to evaluate their prognostic value. This retrospective study enrolled 41 patients with newly diagnosed glioblastoma. The mean and maximal relative cerebral blood volume (rCBV) ratio (rCBVmean and rCBVmax), derived from MR perfusion weighted imaging, of the enhancing tumor, as well as maximal rCBV ratio of peri-enhancing tumor area (rCBVperi-tumor) were measured. The ki-67 labeling index, mammalian target of rapamycin (mTOR) activation, epidermal growth factor receptor (EGFR) amplification, isocitrate dehydrogenase (IDH) mutation and TP53 were assessed. There was a significant correlation between rCBVmax and mTOR based on Pearson’s correlations with Benjamini–Hochberg adjustment for controlling false discovery rate, p = 0.047. The rCBVperi-tumor showed significant correlation with mTOR (p = 0.0183) after adjustment of gender and EGFR status. The mean rCBVperi-tumor value of the patients with OS shorter than 14 months was significantly higher than patients with OS longer than 14 months, p = 0.002. The rCBVperi-tumor and age were the two strongest predictors of OS (hazard ratio = 1.29 and 1.063 respectively) by Cox regression analysis. This study showed that hemodynamic abnormalities of glioblastoma were associated with genomics activation status of mTOR-EGFR pathway, however, the radiogenomics associations are different in enhancing and peri-enhancing area of glioblastoma. The rCBVperi-tumor has better prognostic value than genomic biomarkers alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Turner MC, Walsh KM, Wrensch MR et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16(7):896–913

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507

    Article  CAS  PubMed  Google Scholar 

  3. Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 17(Suppl 4):iv1–iv62

    Article  PubMed  PubMed Central  Google Scholar 

  4. Holand K, Salm F, Arcaro A (2011) The phosphoinositide 3-kinase signaling pathway as a therapeutic target in grade IV brain tumors. Curr Cancer Drug Targets 11(8):894–918

    Article  CAS  PubMed  Google Scholar 

  5. Horne AH, Zanca C, Furnari F. Epidermal growth factor receptor targeting and challenges in glioblastoma. Neuro-oncology 18(7):914–918. doi:10.1093/neuonc/nov319

  6. Westhoff MA, Karpel-Massler G, Brühl O, Enzenmüller S, La Ferla-Brühl K, Siegelin MD, Nonnenmacher L, Debatin KM (2014) A critical evaluation of PI3K inhibition in glioblastoma and neuroblastoma therapy. Mol Cell Ther 2:32

    Article  PubMed  PubMed Central  Google Scholar 

  7. Radoul M, Chaumeil MM, Eriksson P, Wang AS, Phillips JJ, Ronen SM (2016) MR Studies of glioblastoma models treated with dual PI3K/mTOR inhibitor and temozolomide - metabolic changes are associated with enhanced survival. Mol Cancer Ther 15(5):1113–1122. doi:10.1158/1535-7163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prasad G, Sottero T, Yang X et al (2011) Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro Oncol 13(4):384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burckel H, Josset E, Denis JM, Gueulette J, Slabbert J, Noël G, Bischoff P (2015) Combination of the mTOR inhibitor RAD001 with temozolomide and radiation effectively inhibits the growth of glioblastoma cells in culture. Oncol Rep 33(1):471–477

    Article  CAS  PubMed  Google Scholar 

  10. Sami A, Karsy M (2013) Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol 34(4):1991–2002

    Article  CAS  PubMed  Google Scholar 

  11. Wilson R, Nowak NJ, Cowell JK et al (2005) Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01–03 and 00–01. Clin Cancer Res 11(21):7841–7850

    Article  PubMed  Google Scholar 

  12. van den Bent MJ, Gao Y, Kerkhof M et al (2015) Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro Oncol 17(7):935–941

    Article  PubMed  Google Scholar 

  13. Chung AS, Ferrrar N (2011) Developmental and pathological angiogenesis. Annu Rev Cell DEV Biol 27:563–384

    Article  CAS  PubMed  Google Scholar 

  14. Cella CA, Minucci S, Spada F, Galdy S, Elgendy M etal (2015) Dual inhibition of mTOR pathway and VEGF signalling in neuroendocrine neoplasms: from bench to bedside. Cancer treat Rev 41:754–760

    Article  CAS  PubMed  Google Scholar 

  15. Villaume K, Blanc M, Gouysse G, Walter T, Couderc C et al (2010) VEGF secretion by neuroendocrine tumor cells is inhibited by octreotide and inhibitors of the PI3K/AKT/mTOR pathway. Neuroendocrinology 91:268–278

    Article  CAS  PubMed  Google Scholar 

  16. Geer CP, Simonds J, Anvery A et al (2012) Does MR perfusion imaging impact management decisions for patients with brain tumors? A prospective study. AJNR Am J Neuroradiol 33(3):556–562

    Article  CAS  PubMed  Google Scholar 

  17. Castillo M (2014) History and evolution of brain tumor imaging: insights through radiology. Radiology 273(2 Suppl):S111–S125

    Article  PubMed  Google Scholar 

  18. Shiroishi MS, Castellazzi G, Boxerman JL et al (2015) Principles of T2*-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging. J Magn Reson Imaging 41(2):296–313

    Article  PubMed  Google Scholar 

  19. Liu X, Tian W, Kolar B et al (2011) MR diffusion tensor and perfusion weighted imaging in preoperative grading of supratentorial non-enhancing gliomas. Neuro-Oncology 13(4):447–455

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jain R, Poisson LM, Narang J et al (2013) Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 267(1):212–220

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jain R, Poisson LM, Gutman D et al (2014) Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology 272(2):484–493

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mangla R, Singh G, Ziegelitz D et al (2010) Changes in relative cerebral blood volume 1 month after radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 256(2):575–584

    Article  PubMed  Google Scholar 

  23. Thilmann O (2004) LUPE: an extensible modular framework for evaluation of DSC-acquired perfusion images. MAGMA 16(electronic suppl 1):537

    Google Scholar 

  24. Haselhorst R, Kappos L, Bilecen D et al (2000) Dynamic susceptibility contrast MR imaging of plaque development in multiple sclerosis: application of an extended blood-brain barrier leakage correction. J Magn Reson Imaging 11(5):495–505

    Article  CAS  PubMed  Google Scholar 

  25. Shiroishi MS, Boxerman JL, Pope WB (2016) Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma. Neuro Oncol 18(4):467–478

    Article  PubMed  Google Scholar 

  26. Maia AC Jr, Malheiros SM, da Rocha AJ et al (2005) MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am J Neuroradiol 26(4):777–783

    PubMed  Google Scholar 

  27. Awasthi R, Rathore RK, Soni P et al (2012) Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 54(3):205–213

    Article  PubMed  Google Scholar 

  28. Zhang JH, Wang MS, Pan HH, Li SF, Wang ZQ, Chen WS (2012) Correlation of CT perfusion images with VEGF expression in solitary brain metastases. Asian Pac J Cancer Prev 13(4):1575–1578

    Article  PubMed  Google Scholar 

  29. Ginat DT, Mangla R, Yeaney G, Schaefer PW, Wang H (2012) Correlation between dynamic contrast-enhanced perfusion MRI relative cerebral blood volume and vascular endothelial growth factor expression in meningiomas. Acad Radiol 19(8):986–990

    Article  PubMed  Google Scholar 

  30. Haris M, Husain N, Singh A et al (2008) Dynamic contrast-enhanced derived cerebral blood volume correlates better with leak correction than with no correction for vascular endothelial growth factor, microvascular density, and grading of astrocytoma. J Comput Assist Tomogr 32(6):955–965

    Article  PubMed  Google Scholar 

  31. Zhu Y, K Shah (2014) Multiple lesions in receptor tyrosine kinase pathway determine glioblastoma response to pan-ERBB inhibitor PF-00299804 and PI3K/mTOR dual inhibitor PF-05212384. Cancer Biol Ther 15(6):815–822

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N (2006) MTOR, translation intiation and cancer. Oncogene 25:6416–6422

    Article  CAS  PubMed  Google Scholar 

  33. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev 6:729–734

    Article  CAS  Google Scholar 

  34. Klingler S, Guo B, Yao J et al (2015) Development of resistance to EGFR targeted therapy in malignant glioma can occur through EGFR dependent and independent mechanisms. Cancer Res 75(10):2109–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mangla R, Kolar B, Zhu T, Zhong J, Almast J, Ekholm S (2011) Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. Am J Neuroradiol 32(6):1004–1010

    Article  CAS  PubMed  Google Scholar 

  36. Law M, Cha S, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    Article  PubMed  Google Scholar 

  37. Wang S, Kim S, Chawla S et al (2011) Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 32(3):507–514

    Article  CAS  PubMed  Google Scholar 

  38. Lemée JM, Clavreul A, Menei P (2015) Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro Oncol 17(10):1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  39. Clarkea JL, Molinaro AM, Phillips JJ et al (2014) A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro-Oncology 16(7):984–990

    Article  Google Scholar 

  40. Brown PD, Krishnan S, Sarkaria JN et al (2008) Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 26(34):5603–5609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peereboom DM, Shepard DR, Ahluwalia MS et al (2010) Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol 98(1):93–99

    Article  CAS  PubMed  Google Scholar 

  42. Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  CAS  PubMed  Google Scholar 

  43. Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mangla R, Ginat DT, Kamalian S, Milano MT, Korones DN, Walter KA, Ekholm S (2014) Correlation between progression free survival and dynamic susceptibility contrast MRI perfusion in WHO grade III glioma subtypes. J Neurooncol 116(2):325–331

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Liu.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Ethical approval

This institutional review board at University of Rochester Medical Center approved this study, and the need to obtain informed consent was waived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Mangla, R., Tian, W. et al. The preliminary radiogenomics association between MR perfusion imaging parameters and genomic biomarkers, and their predictive performance of overall survival in patients with glioblastoma. J Neurooncol 135, 553–560 (2017). https://doi.org/10.1007/s11060-017-2602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2602-x

Keywords

Navigation