Skip to main content

Advertisement

Log in

Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Frozen tissue, a gold standard biospecimen, can yield well preserved nucleic acids and proteins after over a decade but is vulnerable to thawing and has substantial fiscal, spatial, and environmental costs. A long-term room temperature biospecimen storage alternative that preserves broad analytical utility can potentially empower tissue-based research. As there is scant data on the analytical utility of lyophilized brain tumor biospecimens, we evaluated lyophilized (freeze-dried) samples stored for 1 year at room temperature. Lyophilized tumor tissue processed into paraffin sections produced good histology. Yields of extracted DNA, RNA, and protein approximated those of frozen tissue. After 1 year, lyophilized samples yielded high molecular weight DNA that permitted copy number variation analysis, IDH 1 mutation detection, and MGMT promoter methylation PCR. A 27 % decrease in RIN scores over the 1 year suggests that RNA degradation was inhibited though incompletely. Nevertheless, RT-PCR studies on lyophilized tissue performed similarly to frozen tissue. In contrast to FFPE tissues where protein bands were absent or shifted to a lower molecular weight, lyophilized samples showed similar protein bands as frozen tissue on SDS-PAGE analysis. Lyophilized tissue performed similarly to frozen tissue for Western blots and enzyme activity assays. Immunohistochemistry of lyophilized tissue that were processed into FFPE blocks often required longer incubation times for staining than standard FFPE samples but generally provided robust antigen detection. This preliminary study suggests that lyophilization has promise for long-term room temperature storage while permitting varied tests; however, further work is required to better stabilize nucleic acids particularly RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chu TY, Hwang KS, Yu MH, Lee HS, Lai HC, Liu JY (2002) A research-based tumor tissue bank of gynecologic oncology: characteristics of nucleic acids extracted from normal and tumor tissues from different sites. Int J Gynecol Cancer 12(2):171–176. doi:10.1046/j.1525-1438.2002.01085.x

    Article  PubMed  Google Scholar 

  2. Leonard S, Logel J, Luthman D, Casanova M, Kirch D, Freedman R (1993) Biological stability of mRNA isolated from human postmortem brain collections. Biol Psychiatry 33(6):456–466

    Article  PubMed  CAS  Google Scholar 

  3. U.S. EPA (2011) Personal Emissions Calculator Assumptions and References–What you can do—Climate Change—U.S. EPA. Available via DIALOG. http://www.epa.gov/climatechange/wycd/calculator/ind_assumptions.html. Accessed 28 Dec 2011

  4. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161(6):1961–1971

    Article  PubMed  CAS  Google Scholar 

  5. Mizuno TNH, Iwamoto KS, Ito T, Fukuhara T, Tokunaga M, Tokuoka S, Mabuchi K, Seyama T (1998) RNA from decades-old archival tissue blocks for retrospective studies. Diagn Mol Pathol 7(4):202–208

    Article  PubMed  CAS  Google Scholar 

  6. Preusser M, Plumer S, Dirnberger E, Hainfellner JA, Mannhalter C (2010) Fixation of brain tumor biopsy specimens with rcl2 results in well-preserved histomorphology. Immunohistochem Nucleic Acids Brain Pathol 20(6):1010–1020. doi:10.1111/j.1750-3639.2010.00400.x

    Article  CAS  Google Scholar 

  7. Vincek V, Nassiri M, Nadji M, Morales AR (2003) A tissue fixative that protects macromolecules (DNA, RNA, and protein) and histomorphology in clinical samples. Lab Invest 83(10):1427–1435

    Article  PubMed  CAS  Google Scholar 

  8. Hawass Z, Gad YZ, Ismail S, Khairat R, Fathalla D, Hasan N, Ahmed A, Elleithy H, Ball M, Gaballah F, Wasef S, Fateen M, Amer H, Gostner P, Selim A, Zink A, Pusch CM (2010) Ancestry and pathology in king Tutankhamun’s family. JAMA 303(7):638–647. doi:10.1001/jama.2010.121

    Article  PubMed  CAS  Google Scholar 

  9. Mekota A-M, Vermehren M (2005) Determination of optimal rehydration, fixation and staining methods for histological and immunohistochemical analysis of mummified soft tissues. Biotech Histochem 80(1):7–13. doi:10.1080/10520290500051146

    Article  PubMed  CAS  Google Scholar 

  10. Jennings TA (2008) Lyophilization: introduction and basic principles. CRC Press LLC, Boca Raton

    Google Scholar 

  11. Mellor JD (1978) Fundamentals of freeze drying. Elsevier/Academic Press, Maryland Heights

    Google Scholar 

  12. Bode AP (2007) Fischer TH (2007) Lyophilized Platelets: fifty Years in the making. Artif Cells Blood Substit Immobil Biotechnol 35(1):125–133. doi:10.1080/10731190600974962

    Article  PubMed  Google Scholar 

  13. Hellstern P (2008) Fresh-frozen plasma, pathogen-reduced single-donor plasma or bio-pharmaceutical plasma? Transfus Apher Sci 39(1):69–74

    Article  PubMed  Google Scholar 

  14. Wolkers WF, Tablin F, Crowe JH (2002) From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol A 131(3):535–543

    Google Scholar 

  15. Bolla PA, Serradell Mde L, de Urraza PJ, De Antoni GL (2011) Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. J Dairy Res 78(01):15–22. doi:10.1017/S0022029910000610

    Article  PubMed  CAS  Google Scholar 

  16. Buchanan SS, Pyatt DW, Carpenter JF (2010) Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage. PLoS One 5(9):12518

    Article  Google Scholar 

  17. Hu WW, Wang Z, Hollister SJ, Krebsbach PH (2007) Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther 14(11):891–901

    Article  PubMed  CAS  Google Scholar 

  18. Matsuo S, Sugiyama T, Okuyama T, Yoshikawa K, Honda K, Takahashi R, Maeda S (1999) Preservation of pathological tissue specimens by freeze-drying for immunohistochemical staining and various molecular biological analyses. Pathol Int 49(5):383–390. doi:10.1046/j.1440-1827.1999.00887.x

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi R, Matsuo S, Okuyama T, Sugiyama T (1995) Degradation of Macromolecules during Preservation of Lyophilized Pathological Tissues. Pathol Res Pract 191(5):420–426

    Article  PubMed  CAS  Google Scholar 

  20. Sturgeon R, Lam J, Windust A, Grinberg P, Zeisler R, Oflaz R, Paul R, Lang B, Fagan J, Simard B, Kingston C (2012) Determination of moisture content of single-wall carbon nanotubes. Anal Bioanal Chem 402(1):429–438. doi:10.1007/s00216-011-5509-y

    Article  PubMed  CAS  Google Scholar 

  21. Lai A, Tran A, Nghiemphu PL, Pope WB, Solis OE, Selch M, Filka E, Yong WH, Mischel PS, Liau LM, Phuphanich S, Black K, Peak S, Green RM, Spier CE, Kolevska T, Polikoff J, Fehrenbacher L, Elashoff R, Cloughesy T (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29(2):142–148. doi:10.1200/jco.2010.30.2729

    Article  PubMed  CAS  Google Scholar 

  22. Yoshimoto K, Dang J, Zhu S, Nathanson D, Huang T, Dumont R, Seligson DB, Yong WH, Xiong Z, Rao N, Winther H, Chakravarti A, Bigner DD, Mellinghoff IK, Horvath S, Cavenee WK, Cloughesy TF, Mischel PS (2008) Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples. Clin Cancer Res 14(2):488–493. doi:10.1158/1078-0432.ccr-07-1966

    Article  PubMed  CAS  Google Scholar 

  23. Carvalho L, Smirnov I, Baia G, Modrusan Z, Smith J, Jun P, Costello J, McDermott M, VandenBerg S, Lal A (2007) Molecular signatures define two main classes of meningiomas. Mol Cancer 6(1):64

    Article  PubMed  Google Scholar 

  24. Idbaih A, Carvalho Silva R, Crinière E, Marie Y, Carpentier C, Boisselier B, Taillibert S, Rousseau A, Mokhtari K, Ducray F, Thillet J, Sanson M, Hoang-Xuan K, Delattre J-Y (2008) Genomic changes in progression of low-grade gliomas. J Neurooncol 90(2):133–140. doi:10.1007/s11060-008-9644-z

    Article  PubMed  CAS  Google Scholar 

  25. Network TCGAR (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  Google Scholar 

  26. Wada K, Maruno M, Suzuki T, Kagawa N, Hashiba T, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T (2004) Chromosomal and genetic aberrations differ with meningioma subtype. Brain Tumor Pathol 21(3):127–133. doi:10.1007/bf02482188

    Article  PubMed  CAS  Google Scholar 

  27. Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci USA 89(10):4309–4313

    Article  PubMed  CAS  Google Scholar 

  28. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84(19):6899–6903

    Article  PubMed  CAS  Google Scholar 

  29. Corridori F, Cremona T, Tagliabue G (1960) Glutamic-oxalacetic transaminase and lactic dehydrogenase activities in brain tumour homogenates. J Neurochem 6(2):142–145. doi:10.1111/j.1471-4159.1960.tb13459.x

    Article  PubMed  CAS  Google Scholar 

  30. Vaught J, Rogers J, Carolin T (2011) Compton C (2011) biobankonomics: developing a sustainable business model approach for the formation of a human tissue biobank. J Natl Cancer Inst Monogr 42:24–31. doi:10.1093/jncimonographs/lgr009

    Article  Google Scholar 

  31. Leboeuf C, Ratajczak P, Zhao W-L, François Plassa L, Court M, Pisonero H, Murata H, Cayuela J-M, Ameisen J-C, Garin J, Janin A (2008) Long-term preservation at room temperature of freeze-dried human tumor samples dedicated to nucleic acids analyses. Cell Preserv Technol 6(3):191–198. doi:10.1089/cpt.2008.0003

    Article  CAS  Google Scholar 

  32. Matsuo S, Toyokuni S, Osaka M, Hamazaki S, Sugiyama T (1995) Degradation of DNA in dried tissues by atmospheric oxygen. Biochem Biophys Res Commun 208(3):1021–1027

    Article  PubMed  CAS  Google Scholar 

  33. Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174(4432):689–691

    Article  PubMed  CAS  Google Scholar 

  34. Cirak B, Inci S, Palaoglu S, Bertan V (2003) Lipid peroxidation in cerebral tumors. Clin Chim Acta 327(1–2):103–107

    Article  PubMed  CAS  Google Scholar 

  35. Colquhoun A (2010) Lipids, mitochondria and cell death: implications in neuro-oncology. Mol Neurobiol 42(1):76–88. doi:10.1007/s12035-010-8134-4

    Article  PubMed  CAS  Google Scholar 

  36. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7(2):97–110

    Article  PubMed  CAS  Google Scholar 

  37. Zengin E, Atukeren P, Kokoglu E, Gumustas MK, Zengin U (2009) Alterations in lipid peroxidation and antioxidant status in different types of intracranial tumors within their relative peritumoral tissues. Clin Neurol Neurosurg 111(4):345–351

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Art of the Brain Fund, Harry E. Singleton Cancer Fund, NIH P50 NS044378, and U01 MH083500. We thank the Translational Pathology Core Laboratory at UCLA for resources provided. We thank Joe DeYoung and the Southern California Genotyping Consortium for assistance in SNP genotyping.

Conflict of interest

We have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Yong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mareninov, S., De Jesus, J., Sanchez, D.E. et al. Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage. J Neurooncol 113, 365–373 (2013). https://doi.org/10.1007/s11060-013-1135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1135-1

Keywords

Navigation