Skip to main content

Advertisement

Log in

A phase I/II trial and pharmacokinetic study of ixabepilone in adult patients with recurrent high-grade gliomas

  • Clinical Study – Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2010

Abstract

Ixabepilone is an epothilone, a novel class of non-taxane microtubule stabilizing agents. A phase I/II and pharmacokinetic trial of ixabepilone was conducted in patients with recurrent high-grade gliomas. Adult patients received ixabepilone as a 1-h infusion daily for 5 days every 3 weeks. A modified continual reassessment method was used to escalate doses, beginning at 5.0 mg/m2, in patients stratified by use or non-use of enzyme inducing antiepileptic drugs (EIAED). In the phase I study, the maximum tolerated dose (MTD) and pharmacokinetics of ixabepilone were determined for each group. The phase II study used a two-stage design to evaluate response rate. Secondary endpoints were survival and 6-month progression free survival. In the phase I trial, 38 patients (median age 54 years) were enrolled. The MTD was 6.8 mg/m2 for patients not taking EIAEDs and 9.6 mg/m2 for those taking EIAEDs. The dose limiting toxicities in both groups were hematologic. Twenty-three patients (median age 54 years) were enrolled in the first stage of the phase II trial. No objective responses were observed. Median overall survival was 5.8 (95% CI, 5.0–8.6) months and 6-month PFS rate was 4% (95% CI, 0–22%). The overall mean total body clearance for ixabepilone was significantly higher (P = 0.003) in patients receiving EIAEDs (36 ± 11 l/h/m2) than those not (24 ± 9.2 l/h/m2). Patients on EIAEDs had a substantially higher MTD likely due to induction of cytochrome P450. Ixabepilone had no activity in patients with recurrent high-grade gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics. Cancer J Clin 49:8–31

    Article  CAS  Google Scholar 

  2. Gerth K, Bedorf N, Hofle G, Irschik H, Reichenbach H (1996) Epothilons A and B: antifungal and cytotoxic compounds from sorangium cellulosum (myxobacteria) production, physico-chemical and biological properties. J Antibiot 49:560–563

    CAS  PubMed  Google Scholar 

  3. Bollag DM, McQueney PA, Zhu J et al (1995) Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 55:2325–2333

    CAS  PubMed  Google Scholar 

  4. Kowalski RJ, Giannakakou P, Hamel E (1997) Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (taxol(R)). J Biol Chem 272:2534–2541

    Article  CAS  PubMed  Google Scholar 

  5. Lee FY, Borzilleri R, Fairchild CR et al (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior antitumor efficacy. Clin Cancer Res 7:1429–1437

    CAS  PubMed  Google Scholar 

  6. Muhlradt PF, Sasse F (1997) Epothilone B stabilizes microtubuli of macrophages like taxol without showing taxol-like endotoxin activity. Cancer Res 57:3344–3346

    CAS  PubMed  Google Scholar 

  7. Muldoon LL, Soussain C, Jahnke K et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305

    Article  CAS  PubMed  Google Scholar 

  8. Chamberlain MC, Kormanik P (1999) Salvage chemotherapy with taxol for recurrent anaplastic astrocytomas. J Neurooncol 43:71–78

    Article  CAS  PubMed  Google Scholar 

  9. Chang SM, Kuhn JG, Robins HI et al (2001) A phase II study of paclitaxel in patients with recurrent malignant glioma using different doses depending upon the concomitant use of anticonvulsants: a North American brain tumor consortium report. Cancer 91:417–422

    Article  CAS  PubMed  Google Scholar 

  10. Prados MD, Schold SC, Spence AM et al (1996) Phase II study of paclitaxel in patients with recurrent malignant glioma. J Clin Oncol 14:2316–2321

    CAS  PubMed  Google Scholar 

  11. Peterson JK, Tucker C, Favours E et al (2005) In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 11:6950–6958

    Article  CAS  PubMed  Google Scholar 

  12. Goel S, Cohen M, Cömezoglu SN et al (2008) The effect of ketoconazole on the pharmacokinetics and pharmacodynamics of ixabepilone: a first in class epothilone B analogue in late-phase clinical development. Clin Cancer Res 14:2701–2709

    Article  CAS  PubMed  Google Scholar 

  13. Vecht CJ, Wagner GL, Wilms EB (2003) Interactions between antiepileptic and chemotherapeutic drugs. Lancet Neurol 2:404–409

    Article  CAS  PubMed  Google Scholar 

  14. Abraham J, Agrawal M, Bakke S et al (2003) Phase I trial and pharmacokinetic study of BMS-247550, an epothilone B analog, administered intravenously on a daily schedule for five days. J Clin Oncol 21:1866–1873

    Article  CAS  PubMed  Google Scholar 

  15. Aghajanian C, Burris HA III, Jones S et al (2007) Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. J Clin Oncol 25:1082–1088

    Article  CAS  PubMed  Google Scholar 

  16. Larkin JM, Kaye SB (2007) Potential clinical applications of epothilones: a review of phase II studies. Ann Oncol 18:28–34

    Article  Google Scholar 

  17. Piantadosi S, Fisher JD, Grossman S (1998) Practical implementation of a modified continual reassessment method for dose-finding trials. Cancer Chemother Pharmacol 41:429–436

    Article  CAS  PubMed  Google Scholar 

  18. Shah VP, Midha KK, Dighe S et al (1991) Analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies. Conference report. Eur J Drug Metab Pharmacokinet 16:249–255

  19. Lacey LF, Keene ON, Pritchard JF, Bye A (1997) Common noncompartmental pharmacokinetic variables: are they normally or log-normally distributed? J Biopharm Stat 7:171–178

    Article  CAS  PubMed  Google Scholar 

  20. Mizuta E, Tsubotani A (1985) Preparation of mean drug concentration–time curves in plasma. A study on the frequency distribution of pharmacokinetic parameters. Chem Pharm Bull 33:1620–1632

    CAS  PubMed  Google Scholar 

  21. Beumer JH, Garner RC, Cohen MB et al (2007) Human mass balance study of the novel anticancer agent ixabepilone using accelerator mass spectrometry. Invest New Drugs 25:327–334

    Article  CAS  PubMed  Google Scholar 

  22. Zhou S, Yung Chan S, Cher Goh B et al (2005) Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet 44:279–304

    Article  CAS  PubMed  Google Scholar 

  23. Glantz MJ, Cole BF, Forsyth PA et al (2000) Practice parameter: anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Report of the quality standards subcommittee of the American academy of neurology. Neurology 54:1886–1893

    CAS  PubMed  Google Scholar 

  24. Tanaka E (1999) Clinically significant pharmacokinetic drug interactions between antiepileptic drugs. J Clin Pharm Ther 24:87–92

    Article  CAS  PubMed  Google Scholar 

  25. Chang SM, Kuhn J, Wen P et al (2004) Phase I/pharmacokinetic study of CCI-779 in patients with recurrent malignant glioma on enzyme-inducing antiepileptic drugs. Invest New Drugs 22:427–435

    Article  CAS  PubMed  Google Scholar 

  26. Cloughesy TF, Kuhn J, Robins HI et al (2005) Phase I trial of tipifarnib in patients with recurrent malignant glioma taking enzyme-inducing antiepileptic drugs: a North American brain tumor consortium study. J Clin Oncol 23:6647–6656

    Article  CAS  PubMed  Google Scholar 

  27. Fetell MR, Grossman SA, Fisher JD et al (1997) Preirradiation paclitaxel in glioblastoma multiforme: efficacy, pharmacology, and drug interactions. New approaches to brain tumor therapy central nervous system consortium. J Clin Oncol 15:3121–3128

    CAS  PubMed  Google Scholar 

  28. Galanis E, Buckner JC, Maurer MJ et al (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 23:5294–5304

    Article  CAS  PubMed  Google Scholar 

  29. Gilbert MR, Supko JG, Batchelor T et al (2003) Phase I clinical and pharmacokinetic study of irinotecan in adults with recurrent malignant glioma. Clin Cancer Res 9:2940–2949

    CAS  PubMed  Google Scholar 

  30. Grossman SA, Hochberg F, Fisher J et al (1998) Increased 9-aminocamptothecin dose requirements in patients on anticonvulsants. NABTT CNS consortium the new approaches to brain tumor therapy. Cancer Chemother Pharmacol 42:118–126

    Article  CAS  PubMed  Google Scholar 

  31. Phuphanich S, Baker SD, Grossman SA et al (2005) Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: a dose escalation and pharmacologic study. Neuro Oncol 7:177–182

    Article  CAS  PubMed  Google Scholar 

  32. Prados MD, Lamborn KR, Chang S et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol 8:67–78

    Article  CAS  PubMed  Google Scholar 

  33. Reardon DA, Egorin MJ, Quinn JA et al (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368

    Article  CAS  PubMed  Google Scholar 

  34. Reardon DA, Quinn JA, Vredenburgh JJ et al (2006) Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 12:860–868

    Article  CAS  PubMed  Google Scholar 

  35. Luo G, Cunningham M, Kim S et al (2002) CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos 30:795–804

    Article  CAS  PubMed  Google Scholar 

  36. Raucy JL (2003) Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products. Drug Metab Dispos 31:533–539

    Article  CAS  PubMed  Google Scholar 

  37. Faucette SR, Wang H, Hamilton GA et al (2004) Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab Dispos 32:348–358

    Article  CAS  PubMed  Google Scholar 

  38. Mani S, McDaid H, Hamilton A et al (2004) Phase I clinical and pharmacokinetic study of BMS-247550, a novel derivative of epothilone B, in solid tumors. Clin Cancer Res 10:1289–1298

    Article  CAS  PubMed  Google Scholar 

  39. Gadgeel SM, Wozniak A, Boinpally RR et al (2005) Phase I clinical trial of BMS-247550, a derivative of epothilone B, using accelerated titration 2B design. Clin Cancer Res 11:6233–6239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed by the New Approaches to Brain Tumor Therapy CNS Consortium, Baltimore, MD, USA, and supported in part by National Cancer Institute UO1 Grant CA62475 (NABTT Central Office). Kathryn A. Carson’s work on the manuscript was supported by National Center for Research Resources grant UL1 RR 025005. We are grateful to Kimberly Busby for her support of this clinical trial development and manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Joy Fisher.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11060-010-0234-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peereboom, D.M., Supko, J.G., Carson, K.A. et al. A phase I/II trial and pharmacokinetic study of ixabepilone in adult patients with recurrent high-grade gliomas. J Neurooncol 100, 261–268 (2010). https://doi.org/10.1007/s11060-010-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0190-0

Keywords

Navigation