Skip to main content

Advertisement

Log in

Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

DTAT13, a novel recombinant bispecific immunotoxin (IT) consisting of truncated diphtheria toxin, an amino-terminal (AT) fragment of the urokinase-type plasminogen activator (uPa), and a fragment of human IL-13 was assembled in order to target receptors on glioblastoma multiforme (GBM) and its associated neovasculature. Previous in vitro studies confirmed the efficacy of DTAT13 against various GBM cell lines expressing both IL-13 receptor or uPA receptor, and previous in vivo testing demonstrated the efficacy of DTAT13 in significantly inhibiting a range of xenograft tumors and showed that DTAT13 was 160- and 8-fold less toxic to the parental fusion IT, DTAT and DTIL13, respectively.

To further understand the properties of DTAT13, pharmacokinetic/biodistribution experiments were performed. Binding analysis revealed that the IL-13 domain functioned independently of the uPA domain and that the K d for each binding domain was essentially the same as that of DTIL13 and DTAT. Flow cytometry studies indicated that DTAT13 bound better than DTAT or DTIL13. Analysis of the rate of protein synthesis inhibition in U87 MG cells by DTAT13 compared to DTAT revealed a faster rate of inhibition with DTAT13 compared to DTAT. The rate of protein synthesis inhibition of DTAT13 was identical to that of DTIL13 in U373 MG cells. Intracranial biodistribution studies revealed that DTAT13 was able to cross to the contralateral hemisphere unlike DTIL13 but similar to DTAT. These studies show that DTAT13 has properties encompassing those of both DTIL13 and DTAT and warrants further consideration for clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO, Vallera DA (2004) A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft modelProtein Eng Des Sel 17: 157–164

    Article  PubMed  CAS  Google Scholar 

  2. Salcman M, (1985) The morbidity and mortality of brain tumors. A perspective on recent advances in therapyNeurol Clin 3: 229–257

    PubMed  CAS  Google Scholar 

  3. Frankel SA, German WJ (1958) Glioblastoma multiforme (review of 219 cases with regard to natural history, pathology, diagnostic methods and treatment)J Neurosurg 15: 489–503

    Article  PubMed  CAS  Google Scholar 

  4. Walker AE, Robins M, Weinfeld FD (1985) Epidemiology of brain tumors: the national survey of intracranial neoplasmsNeurology 35: 219–226

    PubMed  CAS  Google Scholar 

  5. Mahaley MS, Mettlin C, Natarajan N, Laws ER Jr, Peace BB (1989) National survey patterns of care for brain tumor patientsJ Neurosurg 71: 826–836

    PubMed  Google Scholar 

  6. Rustamzadeh E, Low WC, Vallera DA, Hall WA (2003) Immunotoxin therapy for CNS tumorJ Neurooncol 64: 101–116

    PubMed  Google Scholar 

  7. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade gliomaClin Cancer Res 6: 2157–2165

    PubMed  CAS  Google Scholar 

  8. Kawakami M, Kawakami K, Puri RK (2003) Interleukin-4-Pseudomonas exotoxin chimeric fusion protein for malignant glioma therapyJ Neurooncol 65: 15–25

    Article  PubMed  Google Scholar 

  9. Li C, Hall WA, Jin N, Todhunter DA, Panoskaltsis-Mortari A, Vallera DA (2002) Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude miceProtein Eng 15: 419–427

    Article  PubMed  Google Scholar 

  10. Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY (1999) Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomasClin Cancer Res 5: 985–990

    PubMed  CAS  Google Scholar 

  11. Debinski W, Gibo DM, Slagle B, Powers SK, Gillespie GY (1999) Receptor for interleukin 13 is abundantly and specifically overexpressed in patients with glioblastoma multiformeInt J Oncol 15: 481–486

    PubMed  CAS  Google Scholar 

  12. Mintz A, Gibo DM, Madhankumar AB, Debinski W (2003) Molecular targeting with recombinant cytotoxins of interleukin-13 receptor alpha2-expressing gliomaJ Neurooncol 64: 117–123

    PubMed  Google Scholar 

  13. Husain SR, Joshi BH, Puri RK (2001) Interleukin-13 receptor as a unique target for anti-glioblastoma therapyInt J Cancer 92: 168–175

    Article  PubMed  CAS  Google Scholar 

  14. Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA (2002) Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTATJ Natl Cancer Inst 94: 597–606

    PubMed  CAS  Google Scholar 

  15. Bu X, Khankaldyyan V, Gonzales-Gomez I, Groshen S, Ye W, Zhuo S, Pons J, Stratton JR, Rosenberg S, Laug WE (2004) Species-specific urokinase receptor ligands reduce glioma growth and increase survival primarily by antiangiogenesis mechanismLab Invest 84:667–678

    Article  PubMed  CAS  Google Scholar 

  16. Stragliotto G, Vega F, Stasiecki P, Gropp P, Poisson M, Delattre JY (1996) Multiple infusions of anti-epidermal growth factor receptor (EGFR) monoclonal antibody (EMD55900) in patients with recurrent malignant gliomasEur J Cancer 32: 636–640

    Article  Google Scholar 

  17. Brady LW, Miyamoto C, Woo DV, Rackover M, Emrich J, Bender H, Dadparvar S, Steplewski Z, Koprowski H, Black P (1992) Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody-425 against epidermal growth factor receptor: a phase II trialInt J Radiat Oncol Biol Phys 22:225–230

    PubMed  CAS  Google Scholar 

  18. Cokgor I, Akabani G, Kuan CT, Friedman HS, Friedman AH, Coleman RE, McLendon RE, Bigner SH, Zhao XG, Garcia-Turner AM, Pegram CN, Wikstrand CJ, Shafman TD, Herndon JE 2nd, Provenzale JM, Zalutsky MR, Bigner DD (2000) Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomasJ Clin Oncol 18: 3862–3872

    PubMed  CAS  Google Scholar 

  19. Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, Cokgor I, McLendon RE, Pegram CN, Provenzale JM, Quinn JA, Rich JN, Regalado LV, Sampson JH, Shafman TD, Wikstrand CJ, Wong TZ, Zhao XG, Zalutsky MR, Bigner DD (2002) Phase II trial of murine (131)I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomasJ Clin Oncol 20:1389–1397

    Article  PubMed  CAS  Google Scholar 

  20. Recht LD, Griffin TW, Raso V, Salimi AR (1990) Potent cytotoxicity of an antihuman transferring-ricin-A-chain immunotoxin human glioma cells in vitroCancer Res 50: 6696–6700

    PubMed  CAS  Google Scholar 

  21. Liu TF, Tatter SB, Willingham MC, Yang M, Hu JJ, Frankel AE (2003) Growth factor receptor expression varies among high-grade gliomas and normal brain: epidermal growth factor receptor has excellent properties for interstitial fusion protein therapyMol Cancer Ther 2: 783–787

    PubMed  CAS  Google Scholar 

  22. Wen DY, Hall WA, Conrad J, Godal A, Florenes VA, Fodstad O (1995) In vitro and in vivo variation in transferrin receptor expression on a human medulloblastoma cell lineNeurosurgery 36: 1158–1163

    Article  PubMed  CAS  Google Scholar 

  23. Jain RK (1989) Delivery of novel therapeutic agents in tumors: physiological barriers and strategiesJ Natl Cancer Inst 81: 570–576

    Article  PubMed  CAS  Google Scholar 

  24. Dykes PW, Bradwell AR, Chapman CE, Vaughan AT (1987) Radioimmunotherapy of cancer: clinical studies and limiting factorsCancer Treat Rev 14: 87–106

    Article  PubMed  CAS  Google Scholar 

  25. Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of single chain Fv and comparison with other immunoglobulin formsCancer Res 52: 3402–3408

    PubMed  CAS  Google Scholar 

  26. Kennel SJ, Falcioni R, Wesley JW (1991) Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenograftsCancer Res 51: 1529–1536

    PubMed  CAS  Google Scholar 

  27. Kemshead JT, Hopkins K, Pizer B, Papanastassiou V, Coakham H, Bullimore J,Chandler C (1998) Dose escalation with repeated intrathecal injections of 131I-lablelled MAbs for the treatment of central nervous system malignanciesBr J Cancer 77: 2324–2330

    PubMed  CAS  Google Scholar 

  28. Riva P, Franceschi G, Arista A, Frattarelli M, Riva N, Cremonini AM, Giuliani G, Casi M (1997) Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas: a six-year clinical experienceCancer 80: 2733–2742

    Article  PubMed  CAS  Google Scholar 

  29. Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS (2004) Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomasCancer Res 64: 4069–4077

    Article  PubMed  CAS  Google Scholar 

  30. Le DM, Besson A, Fogg DK, Choi KS, Waisman DM, Goodyer CG, Rewcastle B, Yong VW (2003) Exploitation of astrocytes by glioma cells to facilitate invasiveness: a mechanism involving matrix metalloproteinase-2 and the urokinase-type plasminogen activator-plasmin cascadeJ Neurosci 23: 4034–4043

    PubMed  Google Scholar 

  31. Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M, Rao JS (2003) Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB 19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growthCancer Res 63: 2454–2461

    PubMed  CAS  Google Scholar 

  32. Brechbiel MW, Beitzel PM, Gansow OA (1997) Purification of p-nitor-benzyl C-functionalized diethylenetriamine pentaacetic acids for clinical application using anion-exchange chromatographyJ Chromatogr 771: 63–69

    Article  CAS  Google Scholar 

  33. Brechbiel MW, Gansow OA (1991) Backbone-substituted DTPA-ligands for 90 Y radioimmunotherapyBioconjug Chem 2: 187–194

    Article  PubMed  CAS  Google Scholar 

  34. Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M (1984) Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ionsAnal Biochem 142: 68–78

    Article  PubMed  CAS  Google Scholar 

  35. Blazar BR, Taylor PA, Vallera DA (1994) In vivo or in vitro anti-CD3 epsilon chain monoclonal antibody therapy for the prevention of lethal murine graft-versus-host disease across the major histocompatibility barrier in miceJ Immunol 152: 3665–3674

    PubMed  CAS  Google Scholar 

  36. Kuan CT, Reist CJ, Foulon CF, Lorimer IA, Archer G, Pegram CN, Pastan I, Zalutsky MR, Bigner DD (1999) 125I-labeled anti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific and high-level targeting of glioma xenograftsClin Cancer Res 5: 1539–1549

    PubMed  CAS  Google Scholar 

  37. Kawakami K, Kawakami M, Kioi M, Husain SR, Puri RK (2004) Distribution kinetics of targeted cytotoxin in glioma by bolus or convection-enhanced delivery in murine modelJ Neurosurg 101: 1004–1011

    PubMed  CAS  Google Scholar 

  38. Yang W, Barth RF, Wu G, Ciesielski MJ, Fenstermaker RA, Moffat BA, Ross BD, Wikstrand CJ (2005) Development of a syngeneic rat brain tumor model expressing EGFRvIII and its use for molecular targeting studies with monoclonal antibody L8A4Clin Cancer Res 11: 341–350

    PubMed  CAS  Google Scholar 

  39. Yang W, Barth RF, Adams DM, Ciesielski MJ, Fenstermaker RA, Shukla S, Tjarks W, Caligiuri MA (2002) Convection-enhanced delivery of boronated epidermal growth factor for molecular targeting of EGF receptor-positive gliomasCancer Res 62: 6552–6558

    PubMed  CAS  Google Scholar 

  40. Kataoka K, Asai T, Taneda M, Ueshima S, Matsuo O, Kuroda R, Kawabata A, Carmeliet P (2000) Roles of urokinase type plasminogen activator in brain stab woundBrain Res 887: 187–190

    Article  PubMed  CAS  Google Scholar 

  41. Masos T, Miskin R (1996) Localization of urokinase-type plasminogen activator mRNA in the adult mouse brainBrain Res Mol Brain Res 35: 139–148

    Article  PubMed  CAS  Google Scholar 

  42. Cash E, Minty A, Ferrara P, Caput D, Fradelizi D, Rott O (1994) Macrophage-inactivating IL-13 suppresses experimental autoimmune encephalomyelitis in ratsJ Immunol 153: 4258–4267

    PubMed  CAS  Google Scholar 

  43. Sebire G, Delfraissy JF, Demotes-Mainard J, Oteifeh A, Emilie D, Tardieu M (1996) Interleukin-13 and interleukin-4 act as interleukin-6 inducers in human microglial cellsCytokine 8: 636–641

    Article  PubMed  CAS  Google Scholar 

  44. Doolittle ND, Abrey LE, Ferrari N, Hall WA, Laws ER, McLendon RE, Muldoon LL, Peereboom D, Peterson DR, Reynolds CP, Senter P, Neuwelt EA (2002) Targeted delivery in primary and metastatic brain tumors: summary report of the seventh annual meeting of the Blood–Brain Barrier Disruption ConsortiumClin Cancer Res 8: 1702–1709

    PubMed  Google Scholar 

  45. Remsen LG, Trail PA, Hellstrom I, Neuwelt EA (2000) Enhanced delivery improves the efficacy of a tumor-specific doxorubicin immunoconjugate in a human brain tumor xenograft modelNeurosurgery 46: 704–709

    Article  PubMed  CAS  Google Scholar 

  46. Neuwelt EA, Barnett PA, McCormick CI, Remsen LG, Kroll RA, Sexton G (1998) Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agentsClin Cancer Res 4:1549–1555

    PubMed  CAS  Google Scholar 

  47. Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA (1998) Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood–brain and/or blood–tumor barriersNeurosurgery 43: 879–886

    Article  PubMed  CAS  Google Scholar 

  48. Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA (1996) Increasing volume of distribution to the brain interstial infusion, dose rather than convection, might be the most important factorNeurosurgery 38: 746–752

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by funding from the Peyton Society, Martha L. Kramer Fund, and Funds from the NCI, NIH RO1 CA 108637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Vallera.

Additional information

This work was supported in part by the US Public Health Service Grants RO1-CA1-108637 awarded by the NCI and the NIAID, DHHS and Children’s Cancer Research Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rustamzadeh, E., Vallera, D.A., Todhunter, D.A. et al. Immunotoxin pharmacokinetics: a comparison of the anti-glioblastoma bi-specific fusion protein (DTAT13) to DTAT and DTIL13. J Neurooncol 77, 257–266 (2006). https://doi.org/10.1007/s11060-005-9051-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-005-9051-7

Keywords:

Navigation