Skip to main content
Log in

New Approaches to Cognitive Neurobiology: Methods for Two-Photon in Vivo Imaging of Cognitively Active Neurons

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses the potential of current methods of in vivo two-photon imaging of the activity of neurons involved in episodes of cognitive activity in animals. The principles of fluorescent two-photon microscopy are described and methods for in vivo imaging of neuron activity using calcium indicators of two types – calcium stains and genetically encoded calcium indictors (GECI) – are discussed. A new approach is also considered, using in vivo imaging of genomic activation of cerebral neurons in transgenic animals with fluorescent probes for the expression of the immediate early genes c-fos, Arc, and Egr-1. The main advantages and disadvantages of these approaches are compared and the potentials for the development of in vivo two-photon imaging of neuron activity for studies of the cellular basis of higher brain functions are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahrens, M. B. and Engert, F., “Large-scale imaging in small brains,” Curr. Opin. Neurobiol., 32, 78–86 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Aleksandrov, Yu. I. and Shvyrkov, V. B., “Latent periods and synchronicity of neuron discharges in the visual and somatosensory cortex in response to a conditioned light fl ash,” Neirofi ziologiya, 6, No. 5, 551–554 (1974).

    Google Scholar 

  3. Alivisatos, A. P., Chun, M., Church, G. M., et al., “The brain activity map project and the challenge of functional connectomics,” Neuron, 74, No. 6, 970–974 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Anokhin, K. V. and Sudakov, K. V., “The systems organization of behavior: novelty as the leading factor in early gene expression in the brain on learning,” Usp. Fiziol. Nauk., 24, No. 3, 53–70 (1993).

    PubMed  CAS  Google Scholar 

  5. Anokhin, K. V., “Mapping of memory systems architecture by inducible transcription factors in the brain,” in: Memory and Emotions, Calabrese, P. and Neugebauer, A. (eds.), World Scientific, New Jersey (2002), pp. 320–329.

    Chapter  Google Scholar 

  6. Anokhin, K. V., “Molecular scenarios for consolidation of long-term memory,” Zh. Vyssh. Nerv. Deyat., 47, No. 2, 262–286 (1997).

    Google Scholar 

  7. Berridge, M. J., Lipp, P., and Bootman, M. D., “The versatility and universality of calcium signalling,” Nat. Rev. Mol. Cell. Biol., 1, 11–21 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. Birkner, A., Tischbirek, C. H., and Konnerth, A., “Improved deep two-photon calcium imaging in vivo,” Cell Calcium (2016); pii: S0143-4160 (16) 30215-9.

  9. Cao, V. Y., Ye, Y., Mastwal, S., et al., “Motor learning consolidates Arc-expressing neuronal ensembles in secondary motor cortex,” Neuron, 86, No. 6, 1385–1392 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen, J. L., Andermann, M. L., Keck, T., et al., “Imaging neuronal populations in behaving rodents: paradigms for studying neural circuits underlying behavior in the mammalian cortex,” J. Neurosci., 33, No. 45, 17,631–17,640 (2013).

    Article  CAS  Google Scholar 

  11. Conchello, J. A. and Lichtman, J. W., “Optical sectioning microscopy,” Nat. Methods, 2, 920–931 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. Czajkowski, R., Jayaprakash, B., Wiltgen, B., et al., “Encoding and storage of spatial information in the retrosplenial cortex,” Proc. Natl. Acad. Sci. USA, 111, No. 23, 8661–8666 (2014).

    Article  PubMed  CAS  Google Scholar 

  13. Dana, H., Chen, T.-W., Hu, A., et al., “Thy1-GCaMP6 transgenic mice for neuronal population imaging in vivo,” PLoS One, 9, No. 9, e108697 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Denk, W. and Svoboda, K., “Photon upmanship: why multi-photon imaging is more than a gimmick,” Neuron, 18, 351–357 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Denk, W., “Two-photon scanning photochemical microscopy: mapping ligand-gated ion channel distributions,” Proc. Natl. Acad. Sci. USA, 91, 6629–6633 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. Dombeck, D. A., Harvey, C. D., Tian, L., et al., “Functional imaging of hippocampal place cells at cellular resolution during virtual navigation,” Nat. Neurosci., 13, 1433–1440 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Doronina-Amitonova, L. V., Fedotov, I. V., Fedotov, A. B., et al., “Neuropho tonics: optical study methods and control by the brain,” Usp. Fiz. Nauk., 185, 371–392 (2015).

    Article  CAS  Google Scholar 

  18. Eguchi, M. and Yamaguchi, S., “In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain,” Neuroimage, 44, 1274–1283 (2009).

    Article  PubMed  Google Scholar 

  19. Flavell, S. W. and Greenberg, M. E., “Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system,” Annu. Rev. Neurosci., 31, 563–590 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fletcher, M. L., Masurkar, A. V., Xing, J., et al., “Optical imaging of postsynaptic odor representation in the glomerular layer of the mouse olfactory bulb,” J. Neurophysiol., 102, 817–830 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grienberger, C. and Konnerth, A., “Imaging calcium in neurons,” Neuron, 73, No. 5, 862–885 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. Helmchen, F. and Denk, W., “Deep tissue two-photon microscopy,” Nat. Methods, 2, 932–940 (2005).

    Article  PubMed  CAS  Google Scholar 

  23. Horton, N. G., Wang, K., Kobat, D., et al., “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics, 7, No. 3, 205–209 (2013).

    Article  PubMed Central  CAS  Google Scholar 

  24. Kaczmarek, L., “c-Fos in learning: beyond the mapping of neuronal activity,” in: Handbook of Chemical Neuroanatomy, Vol. 19, Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction, Kaczmarek, L. and Robertson, H. J. (eds.),Elsevier Science (2002), pp. 189–215.

  25. Kawashima, T., Okuno, H., and Bito, H., “A new era for functional labeling of neurons: activity dependent promoters have come of age,” Front. Neural Circ., 8, No. 37, 1–9 (2014).

    Google Scholar 

  26. Komiyama, T., Sato, T. R., O’Connor, D. H., et al., “Learning-related finescale specificity imaged in motor cortex circuits of behaving mice,” Nature, 464, 1182–1186 (2010).

    Article  PubMed  CAS  Google Scholar 

  27. Korb, E. and Finkbeiner, S., “Arc in synaptic plasticity: from gene to behavior,” Trends Neurosci., 34, No. 11, 591–598 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lichtman, J. W., Magrassi, L., and Purves, D., “Visualization of neuromuscular junctions over periods of several months in living mice,” J. Neurosci., 7, 1215–1222 (1987).

    Article  PubMed  CAS  Google Scholar 

  29. Lin, M. Z. and Schnitzer, M. J., “Genetically encoded indicators of neuronal activity,” Nat. Neurosci., 19, No. 9, 1142–1153 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nemoto, T., Kawakami, R., Hibi, T., et al., “Two-photon excitation fluorescence microscopy and its application in functional connectomics,” Microscopy, 64, No. 1, 9–15 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Nicolelis, M. A. and Ribeiro, S., “Multielectrode recordings: the next steps,” Curr. Opin. Neurobiol., 12, 602–606 (2002).

    Article  PubMed  CAS  Google Scholar 

  32. Okuno, H., Akashi, K., Ishii, Y., et al., “Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIp,” Cell, 149, 886–898 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Peron, S., Chen, T.-W., and Svoboda, K., “Comprehensive imaging of cortical networks,” Curr. Opin. Neurobiol., 32, 115–123 (2015).

    Article  PubMed  CAS  Google Scholar 

  34. Peters, A. J., Chen, S. X., and Komiyama, T., “Emergence of reproducible spatiotemporal activity during motor learning,” Nature, 510, No. 7504, 263–267 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Poort, J., Khan, A. G., Pachitariu, M., et al., “Learning enhances sensory and multiple non-sensory representations in primary visual cortex,” Neuron, 86, No. 6, 1478–1490 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rochefort, N. L., Narushima, M., Grienberger, C., et al., “Development of direction selectivity in mouse cortical neurons,” Neuron, 71, 425–432 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Rudinskiy, N., Hawkes, J. M., Betensky, R. A., et al., “Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer’s disease,” Nat. Neurosci., 15, No. 10, 1422–1429 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Saidov, Kh. M. and Anokhin, K. V., “New approaches to cognitive neurobiology: methods of molecular marking and ex vivo visualization of cognitively active neurons,” Zh. Vyssh. Nerv. Deyat. (2017), in press.

  39. Sarder, P., Yazdanfar, S., Akers, W. J., et al., “All-near-infrared multi-photon microscopy interrogates intact tissues at deeper imaging depths than conventional single-and two-photon near-infrared excitation microscopes,” J. Biomed. Opt., 8, No. 10, 106012 (2013).

    Article  CAS  Google Scholar 

  40. Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A., “In vivo twophoton calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. USA, 100, 7319–7324 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Svarnik, O. E., Anokhin, K. V., and Aleksandrov, Yu. I., “Distribution of behaviorally specialized neurons and expression of transcription factor c-Fos in the rat cerebral cortex in learning,” Zh. Vyssh. Nerv. Deyat., 51, 766–769 (2001).

    Google Scholar 

  42. Svoboda, K. and Yasuda, R., “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron, 50, 823–839 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Theer, P., Hasan, M. T., and Denk, W., “Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti: Al2O3 regenerative amplifier,” Opt. Lett., 28, 1022–1024 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Tian, L., Hires, S. A., Mao, T., et al., “Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators,” Nat. Methods, 6, 875–881 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tischbirek, C., Birkner, A., Jia, H., Sakmann, B., and Konnerth, A., “Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator,” Proc. Natl. Acad. Sci. USA, 112, No. 36, 11377–11382 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Tsien, R. W. and Tsien, R. Y., “Calcium channels, stores, and oscillations,” Annu. Rev. Cell Biol., 6, 715–760 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. Urban, B. E., Yi, J, Chen, S., et al., “Super-resolution two-photon microscopy via scanning patterned illumination,” Sci. Rep., 6, 28156 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang, K. H., Majewska, A., Schummers, J., et al., “In vivo two-photon imaging reveals a role of Arc in enhancing orientation specificity in visual cortex,” Cell, 126, 389–402 (2006).

    Article  PubMed  CAS  Google Scholar 

  49. Williams, R. M., Piston, D. W., and Webb, W. W., “Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry,” FASEB J., 8, 804–813 (1994).

    Article  PubMed  CAS  Google Scholar 

  50. Xie, H., Liu, Y., Zhu, Y., et al., “In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain,” Proc. Natl. Acad. Sci. USA, 111, No. 7, 2788–2793 (2014).

    Article  PubMed  CAS  Google Scholar 

  51. Yaksi, E., von Saint Paul, F., Niessing, J., et al., “Transformation of odor representations in target areas of the olfactory bulb,” Nat. Neurosci., 12, 474–482 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Yamada, Y., Michikawa, T., Hashimoto, M., et al., “Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells,” Front. Cell. Neurosci, 5, No. 18 (2011).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 67, No. 2, pp. 141–149, March–April 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshchina, M.A., Ivashkina, O.I. & Anokhin, K.V. New Approaches to Cognitive Neurobiology: Methods for Two-Photon in Vivo Imaging of Cognitively Active Neurons. Neurosci Behav Physi 48, 741–746 (2018). https://doi.org/10.1007/s11055-018-0625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0625-1

Keywords

Navigation