Skip to main content

Advertisement

Log in

CO2 adsorption performance of CuBTC/graphene aerogel composites

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) have been recognized as promising adsorbents for carbon capture due to their ultrahigh surface areas and tunable properties. However, a majority of MOFs have strict requirements for preparation and high mass transfer resistance that limits the gas separation time. In order to improve the applicability of MOFs to practical applications, herein, we reported an experimental approach to prepare structured CuBTC/graphene aerogel (GA) composites using ionic liquid (IL) additives (CuBTC/GA-IL) at room temperature for CO2 capture. The material was characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), specific surface area analysis, and CO2 adsorption tests. It was demonstrated that CuBTC/GA-IL exhibited the higher CO2 uptake than CuBTC/GA prepared without IL additives. Besides, the breakthrough experiments have shown that CuBTC/GA-IL exhibited the lower mass transfer resistance compared with CuBTC-IL and good cyclability. The effective approach of fabricating CuBTC into GA using IL additives to improve CO2 adsorption in this study may be extensively applied for other MOF-based composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Abbreviations

rGO:

reduced graphene oxide

GA:

graphene aerogel

ZIF:

zeolitic imidazolate framework

Zr:

zirconium

MIL:

Matériaux de l’Institut Lavoisier

BTC:

benzene-1,3,5-tricarboxylate

MOFs:

metal-organic frameworks

DMF:

N, N-dimethylformamide

SEM:

scanning electron microscopy

PXRD:

powder X-ray diffractometer

References

  • Anbia M, Hoseini V (2012) Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem Eng J 191:326–330

    Article  CAS  Google Scholar 

  • Bian Z, Zhu X, Jin T, Gao J, Hu J, Liu H (2014) Ionic liquid-assisted growth of Cu3(BTC)2 nanocrystals on graphene oxide sheets: towards both high capacity and high rate for CO2 adsorption. Microporous Mesoporous Mater 200:159–164

    Article  CAS  Google Scholar 

  • Boothandford ME et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189

    Article  CAS  Google Scholar 

  • Chen C, Feng N, Guo Q, Li Z, Li X, Ding J, Wang L, Wan H, Guan G (2018) Template-directed fabrication of MIL-101(Cr)/mesoporous silica composite: layer-packed structure and enhanced performance for CO2 capture. J Colloid Interface Sci 513:891–902

    Article  CAS  Google Scholar 

  • Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1140–1150

    Article  Google Scholar 

  • Furtado AMB, Liu J, Wang Y, LeVan MD (2011) Mesoporous silica–metal organic composite: synthesis, characterization, and ammonia adsorption. J Mater Chem 21:6698–6706

    Article  CAS  Google Scholar 

  • Garcia S, Gil M, Martín C, Pis J, Rubiera F, Pevida C (2011) Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chem Eng J 171:549–556

    Article  CAS  Google Scholar 

  • Ge L, Wang L, Rudolph V, Zhu Z (2013) Hierarchically structured metal–organic framework/vertically-aligned carbon nanotubes hybrids for CO2 capture. RSC Adv 3:25360–25366

    Article  CAS  Google Scholar 

  • Gibbins, Chalmers J, Hannah (2008) Carbon capture and storage. Energy Policy 36:4317–4322

    Article  Google Scholar 

  • Gorka J, Fulvio PF, Pikus S, Jaroniec M (2010) Mesoporous metal organic framework-boehmite and silica composites. Chem Commun (Camb) 46:6798–6800

    Article  CAS  Google Scholar 

  • Inonu Z, Keskin S, Erkey C (2018) An emerging family of hybrid nanomaterials: metal–organic framework/aerogel composites. ACS Appl Nano Mater 1:5959–5980

    Article  CAS  Google Scholar 

  • Jiang M, Li H, Zhou L, Xing R, Zhang J (2018) Hierarchically porous graphene/ZIF-8 hybrid aerogel: preparation, CO2 uptake capacity, and mechanical property. ACS Appl Mater Interfaces 10:827–834

    Article  CAS  Google Scholar 

  • Li J et al (2011) Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord Chem Rev 255:1791–1823

    Article  CAS  Google Scholar 

  • Li G, Pang S, Wu Y, Ouyang J (2018a) Enhanced removal of hydroquinone by graphene aerogel-Zr-MOF with immobilized laccase. Chem Eng Commun 205:698–705

    Article  CAS  Google Scholar 

  • Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C (2018b) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21:108–121

    Article  CAS  Google Scholar 

  • Liu H-S, Lan Y-Q, Li S-L (2010) Metal−organic frameworks with diverse structures constructed by using capsule-like ligand and NiII based on ionothermal and hydrothermal methods. Cryst Growth Des 10:5221–5226

    Article  CAS  Google Scholar 

  • Liu Y, Ghimire P, Jaroniec M (2019) Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. J Colloid Interface Sci 535:122–132

    Article  CAS  Google Scholar 

  • Mao J, Ge M, Huang J, Lai Y, Lin C, Zhang K, Meng K, Tang Y (2017) Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J Mater Chem 5:11873–11881

    Article  CAS  Google Scholar 

  • Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AICHE J 11:121–127

    Article  CAS  Google Scholar 

  • Na L, Zhang L, Zhang W, Hua R (2015) Room temperature synthesis and characterization of metal-organic framework Cu3(BTC)2. Gongneng Cailiao/J Funct Mater 46:12079–12081

    CAS  Google Scholar 

  • Qiu L et al (2008) Hierarchically micro-and mesoporous metal-organic frameworks with tunable porosity. Angew Chem 47:9487–9491

    Article  CAS  Google Scholar 

  • Rezaei F, Webley PA (2010) Structured adsorbents in gas separation processes. Sep Purif Technol 70:243–256

    Article  CAS  Google Scholar 

  • Rezaei F, Mosca A, Webley P, Hedlund J, Xiao P (2010) Comparison of traditional and structured adsorbents for CO2 separation by vacuum-swing adsorption. Ind Eng Chem Res 49:4832–4841

    Article  CAS  Google Scholar 

  • Riaz MA, Hadi P, Abidi IH, Tyagi A, Ou X, Luo Z (2017) Recyclable 3D graphene aerogel with bimodal pore structure for ultrafast and selective oil sorption from water. RSC Adv 7:29722–29731

    Article  CAS  Google Scholar 

  • Shang W, Kang X, Ning H, Zhang J (2013) Shape and size controlled synthesis of MOF nanocrystals with the assistance of ionic liquid mircoemulsions. Langmuir 29:13168–13174

    Article  CAS  Google Scholar 

  • Trickett CA, Helal A, Al-Maythalony BA, Yamani ZH, Cordova KE, Yaghi OM (2017) The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater 2:1–16

    Article  Google Scholar 

  • Wang X-S, Ma S, Sun D, Parkin S, Zhou H-C (2006) A mesoporous metal−organic framework with permanent porosity. J Am Chem Soc 128:16474–16475

    Article  CAS  Google Scholar 

  • Wang B, Xie L-H, Wang X, Liu X-M, Li J, Li J-R (2018) Applications of metal–organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal. Green Energy Environ 3:191–228

    Article  Google Scholar 

  • Xiang Z, Peng X, Cheng X, Li X, Cao D (2011) CNT@Cu3(BTC)2 and metal–organic frameworks for separation of CO2/CH4 mixture. J Phys Chem C 115:19864–19871

    Article  CAS  Google Scholar 

  • Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:1–9

    Google Scholar 

  • Ye R, Ni M, Xu Y, Chen H, Li S (2018) Synthesis of Zn-based metal–organic frameworks in ionic liquid microemulsions at room temperature. RSC Adv 8:26237–26242

    Article  CAS  Google Scholar 

  • Yu J, Xie LH, Li JR, Ma Y, Seminario JM, Balbuena PB (2017) CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev 117:9674–9754

    Article  CAS  Google Scholar 

  • Zhang X, Liang Q, Han Q, Wan W, Ding M (2016) Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of non-steroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 141:4219–4226

    Article  CAS  Google Scholar 

  • Zhao Y, Zhang J, Han B, Song J, Li J, Wang Q (2011) Metal–organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem Int Ed 50:636–639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Analytical & Testing Center of Huazhong University of Science and Technology for the support.

Funding

This work was funded by the National Natural Science Foundation of China (NSFC) under Project Nos. 51836003 and 51606081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wen Ren and Zhenzhen Wei are co-authors.

Electronic supplementary material

ESM 1

(DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Wei, Z., Xia, X. et al. CO2 adsorption performance of CuBTC/graphene aerogel composites. J Nanopart Res 22, 191 (2020). https://doi.org/10.1007/s11051-020-04933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04933-4

Keywords

Navigation