Skip to main content
Log in

Computational study of GanAsm (m + n = 2–9) clusters using DFT calculations

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Gallium arsenide is a semiconductor compound with well-known properties in its bulk phase. Theoretical works explain some of the properties of this material at a cluster scale; nevertheless, more research is required to fully understand these systems. In this work, we used the density functional theory (DFT) formalism, specifically the PBE functional and the TZ2P basis set for the study of structural, electronic, and chemical properties of GanAsm (m + n = 2–9) clusters in the gas phase, for all possible compositions. Our study reveals that the structural and electronic properties in GanAsm clusters present a size and composition dependence, with a size range within 3–10 Å. Even/odd behavior is observed in most electronic and chemical properties of the clusters. The even/odd behavior is related to the electronic close shell structure of the system. It is found that the predominance of arsenic atoms in the GanAsm clusters generate comparatively more stable molecules, with lower binding energies per atom, higher hardness values, ionization potentials, and GapHOMO-LUMO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aguilera-Granja F, Carrete J, Vega A, Gallego LJ (2015) Structural, magnetic, and vibrational properties of stoichiometric clusters of CrN. Int J Quantum Chem 115:523–528

    CAS  Google Scholar 

  • Alexandrova AN, Boldyrev AI (2005) Search for the Lin0/+1/-1 (n = 5−7) lowest-energy structures using the ab initio gradient embedded genetic algorithm (GEGA) elucidation of the chemical bonding in the lithium clusters. J Chem Theor Comp 1:566–580

    CAS  Google Scholar 

  • Andreoni W (1992) III-V semiconductor microclusters: structures, stability, and melting. Phys Rev B 45:4203–4207

    CAS  Google Scholar 

  • Balasubramanian K (1987) Theoretical investigation of spectroscopic properties of As2. J Mol Spectrosc 121:465–473

    CAS  Google Scholar 

  • Balasubramanian K (1988) Enumeration of the isomers of the gallium arsenide clusters (GamAsn). Chem Phys Lett 150:71–77

    CAS  Google Scholar 

  • Balasubramanian K (1990) Electronic structure of (GaAs)2. Chem Phys Lett 171:58–62

    CAS  Google Scholar 

  • BelBruno JJ (2003) Bonding and energetics in small clusters of gallium and arsenic. Heteroatom Chem 14:189–196

    CAS  Google Scholar 

  • Breaux GA, Benirschke RC, Sugai T, Kinnear BS, Jarrold MF (2003) Hot and solid gallium clusters: too small to melt. Phys Rev Lett 91:215508

    Google Scholar 

  • Costales A, Kandalam AK, Franco R, Pandey R (2002) Theoretical study of structural and vibrational properties of (AlP)n, (AlAs)n, (GaP)n, (GaAs)n, (InP)n, and (InAs)n clusters with n = 1, 2, 3. J Phys Chem B 106:1940–1944

    CAS  Google Scholar 

  • Feng YP, Boo TB, Kwong HH, Ong CK, Kumar V, Kawazoe Y (2007) Composition dependence of structural and electronic properties of GamAsn clusters from first principles. Phys Rev B 76:0453361–0453368

    Google Scholar 

  • Fonseca-Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391–403

    Google Scholar 

  • Frisch MJ et al. (2009) Gaussian 09, C.01 edn. Wallingford CT

  • Gaston N, Parker AJ (2011) On the bonding of Ga2, structures of Gan clusters and the relation to the bulk structure of gallium. Chem Phys Lett 501:375–378

    CAS  Google Scholar 

  • Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    CAS  Google Scholar 

  • Ginter DS, Ginter ML, Innes KK (1965) Electronic spectra of the Ga2, In2, and Tl2 molecules. J Phys Chem 69:2480–2483

    CAS  Google Scholar 

  • Graves RM, Scuseria GE (1991) Ab initio theoretical study of small GaAs clusters. J Chem Phys 95:6602–6606

    CAS  Google Scholar 

  • Gutsev GL, Johnson E, Mochena MD, Bauschlicher CW Jr (2008a) The structure and energetics of (GaAs)n, (GaAs)n −, and (GaAs)n+ (n = 2-15). J Chem Phys 128:1447071–1447079

    Google Scholar 

  • Gutsev GL, O’Neal JRH, Saha BC, Mochena MD, Johnson E, Bauschlicher JCW (2008b) Optical properties of (GaAs)n clusters (n= 2-16). J Phys Chem A 112:10728–10735

    CAS  Google Scholar 

  • Guzmán-Ramírez G, Robles J, Vega A, Aguilera-Granja F (2011) Stability, structural, and magnetic phase diagrams of ternary ferromagnetic 3 D-transition-metal clusters with five and six atoms. J Chem Phys 143:0541011–0541019

    Google Scholar 

  • Guzmán-Ramírez G, Salvador P, Robles J, Vega A, Aguilera-Granja F (2013) Density functional study of ternary FexCoyNiz (x+y+z=7) clusters. Theor Chem Accounts 132:1318

    Google Scholar 

  • Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    CAS  Google Scholar 

  • Jin C, Taylor KJ, Conceicao J, Smalley RE (1990) Ultraviolet photoelectron spectra of gallium arsenide clusters. Chem Phys Lett 175:17–22

    CAS  Google Scholar 

  • Karamanis P, Begué D, Pouchan C (2006) Structure and polarizability of small (GaAs)n clusters (n = 2, 3, 4, 5, 6, and 8). Comp Lett 1:255–258

    Google Scholar 

  • Karamanis P, Pouchan C, Weatherford CA, Gutsev GL (2010) Evolution of properties in prolate (GaAs)n clusters. J Phys Chem C 115:97–107

    Google Scholar 

  • Lemire GW, Bishea GA, Heidecke SA, Morse MD (1990) Spectroscopy and electronic structure of jet-cooled GaAs. J Chem Phys 92:121–132

    CAS  Google Scholar 

  • Liao DW, Balasubramanian K (1992) Electronic structure of the III-V tetramer clusters and their positive ions. J Chem Phys 96:8938–8947

    CAS  Google Scholar 

  • Lou L, Wang L, Chibante LPF, Laaksonen RT, Nordlander P, Smalley RE (1991) Electronic structure of small GaAs clusters. J Chem Phys 94:8015–8020

    CAS  Google Scholar 

  • Lou L, Nordlander P, Smalley RE (1992) Electronic structure of small GaAs clusters. II. J Chem Phys 97:1858–1864

    CAS  Google Scholar 

  • Lu QL, Meng JW, Song WJ, Mu YW, Wan JG (2013) Stuffing enhances the stability of medium-sized (GaAs)n. J Phys Chem C 117:12835–12840

    CAS  Google Scholar 

  • Montejano-Carrizales JM, Aguilera-Granja F, Morán-López JL (2011) Structural and magnetic properties of FemYn (m+ n= 7, Y= Ru, Rh, Pd, and Pt) nanoalloys. Eur Phys J D 64:53–62

    CAS  Google Scholar 

  • Morino Y, Ukaji TIT (1966) Molecular structure determination by gas electron diffraction at high temperatures. I. Arsenic Bull Chem Soc Jpn 39:64–71

    CAS  Google Scholar 

  • O’brien SC, Liu YQ, Zhang Q, Heath JR, Tittel FK, Curl RF, Smalley RE (1986) Supersonic cluster beams of III-V semiconductors: GaxAsy. J Chem Phys 84:4074–4079

    Google Scholar 

  • Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    CAS  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules, 1st edn. Oxford Science Publications, USA

  • Quek HK, Feng YP, Ong CK (1997) Tight binding molecular dynamics studies of GamAsn and AlmAsn clusters. Z Phys D Atom Mol Cl 42:309–317

    CAS  Google Scholar 

  • Schäfer R, Becker JA (1996) Photoabsorption spectroscopy on isolated GaNAsM clusters. Phys Rev B 54:10296–10299

    Google Scholar 

  • Schäfer R, Schlecht S, Woenckhaus J, Becker JA (1996) Polarizabilities of isolated semiconductor clusters. Phys Rev Lett 76:471–474

    Google Scholar 

  • SCM (2017) ADF2017 vol 2017. SCM, Vrije Universiteit, Amsterdam

  • Song B, Cao PL (2005) Evolution of the geometrical and electronic structures of Gan (n= 2–26) clusters: a density-functional theory study. J Chem Phys 123:144312

    Google Scholar 

  • Song KM, Ray AK, Khowash PK (1994) On the electronic structures of GaAs clusters. J Phys B-At Mol Opt Phys 27:1637–1648

    CAS  Google Scholar 

  • Steenbergen KG, Gaston N (2013) First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting. Phys Chem Chem Phys 15:15325–15332

    CAS  Google Scholar 

  • Sun Y, Chen X, Sun L, Guo X, Lu W (2003) Nanoring structure and optical properties of Ga8As8. Chem Phys Lett 381:397–403

    CAS  Google Scholar 

  • Swart M, Bickelhaupt FM (2007) QUILD: QUantum-regions interconnected by local descriptions. J Comput Chem 29:724–734

    Google Scholar 

  • Tan X, Dagdigian PJ (2003) Electronic spectrum of the gallium dimer. J Phys Chem A 107:2642–2649

    CAS  Google Scholar 

  • te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Phys Chem 22:931–967

    Google Scholar 

  • Van Lenthe E, Baerends EJ (2003) Optimized slater-type basis sets for the elements 1–118. J Comput Chem 24:1142–1156

    Google Scholar 

  • Wang L, Chibante L, Tittel FK, Curl RF, Smalley RE (1990) Ammonia chemisorption on gallium arsenide clusters. Chem Phys Lett 172:335–340

    CAS  Google Scholar 

  • Yi JY (2000) Atomic and electronic structures of small GaAs clusters. Chem Phys Lett 325:269–274

    CAS  Google Scholar 

  • Zhang QL, Liu Y, Curl RF, Tittel FK, Smalley RE (1988) Photodissociation of semiconductor positive cluster ions. J Chem Phys 88:1670–1677

    CAS  Google Scholar 

  • Zhao W, Cao P (2001) Study of the stable structures of Ga6As6 cluster using FP-LMTO MD method. Phys Lett A 288:53–57

    CAS  Google Scholar 

  • Zhao W, Cao P, Li BSB, Nakamatsu H (2000) Study of the stable structures of Ga4As4 cluster using FP-LMTO MD method. Phys Rev B 62:17138–17143

    CAS  Google Scholar 

  • Zhao J, Xie RH, Zhou X, Chen X, Lu W (2006a) Formation of stable fullerenelike GanAsn clusters (6 ≤ n ≤ 9): gradient-corrected density-functional theory and a genetic global optimization approach. Phys Rev B 74:0353191-0353190.0353195

    Google Scholar 

  • Zhao J, Zhou X, Chen X, Wang J, Jellinek J (2006b) Density-functional study of small and medium-sized Asn clusters up to n= 28. Phys Rev B 73:115418

    Google Scholar 

  • Zhao W, Cao P, Duan W (2006c) Study of structure characteristics of the Ga8As8 cluster. Phys Lett A 349:224–229

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the account granted in the PIPILA supercomputer, at the National Laboratory for the Characterization of Physical-Chemical Properties and Molecular Structure at the University of Guanajuato (CONACYT-México, Proyect:123732). E. Díaz-Cervantes aknowledge to the SICES by the support in the proyect: IJ-19-77 (Programa de empuje científico y tecnológico modalidad “Apoyo a Investigadores Jóvenes”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juvencio Robles.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Jiménez, J.A., Díaz-Cervantes, E., Aguilera-Granja, F. et al. Computational study of GanAsm (m + n = 2–9) clusters using DFT calculations. J Nanopart Res 21, 219 (2019). https://doi.org/10.1007/s11051-019-4664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4664-5

Keywords

Navigation