Skip to main content
Log in

Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Graphene plasmonics has been introduced as a novel platform to design various nano- and microstructures to function in a wide range of spectrum from optical to THz frequencies. Herein, we propose a tunable plasmonic metamaterial in the THz regime by using metallic (silver) concentric microscale split ring resonator arrays on a multilayer metasurface composed of silica and silicon layers. We obtained an absorption percentage of 47.9% including two strong Fano resonant dips in THz regime for the purely plasmonic metamaterial without graphene layer. Considering the data of an atomic graphene sheet (with the thickness of ~0.35 nm) in both analytical and experimental regimes obtained by prior works, we employed a graphene layer under concentric split ring resonator arrays and above the multilayer metasurface to enhance the absorption ratio in THz bandwidth. Our numerical and analytical results proved that the presence of a thin graphene layer enhances the absorption coefficient of MM to 64.35%, at the highest peak in absorption profile that corresponds to the Fano dip position. We also have shown that changing the intrinsic characteristics of graphene sheet leads to shifts in the position of Fano dips and variations in the absorption efficiency. The maximum percentage of absorption (~67%) was obtained for graphene-based MM with graphene layer with dissipative loss factor of 1477 Ω. Employing the antisymmetric feature of the split ring resonators, the proposed graphene-based metamaterial with strong polarization dependency is highly sensitive to the polarization angle of the incident THz beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadivand A, Pala N (2014) Plasmon response of a metal-semiconductor 4π-spiral as a negative-index metamaterial. J Nanopart Res 16:2764

    Article  Google Scholar 

  • Ahmadivand A, Pala N (2015) Tailoring negative-refractive index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum. J Opt Soc Am A 32:204–212

    Article  Google Scholar 

  • Ahmadivand A, Sinha R, Gerislioglu B, Karabiyik M, Pala N, Shur MS (2016) Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies. Opt Lett 41:5333–5336

    Article  Google Scholar 

  • Al-Naib IAI, Jansen C, Born N, Koch M (2011) Polarization and angle independent terahertz metamaterials with high Q-factors. Appl Phys Lett 98:091107

    Article  Google Scholar 

  • Bahl I, Bhartia P (1988) Microwave solid state circuit design. Wiley, New York

    Google Scholar 

  • Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6:3677–3694

    Article  Google Scholar 

  • Campione S, Guclu C, Ragan R, Capolino F (2014) Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles. ACS Photonics 1:254–260

    Article  Google Scholar 

  • Cao W, Singh R, Zhang C, Han J, Tonouchi M, Zhang W (2013) Plasmon-induced transparency in metamaterials: active near field coupling between bright superconducting and dark metallic mode resonators. Appl Phys Lett 103:101106

    Article  Google Scholar 

  • Capolino F (2009) Theory and phenomena of metamaterials. CRC Press, Tailor & Francis, US

    Book  Google Scholar 

  • Chakraborty C, Beams R, Goodfellow KM, Wicks GW, Novotny L, Vamivakas AN (2014) Optical antenna enhanced graphene photodetector. Appl Phys Lett 105:241114

    Article  Google Scholar 

  • Cheng Q, Cui TJ, Jiang WX, Cai BG (2010) An omnidirectional electromagnetic absorber made of metamaterial. New J Phys 12:063006

    Article  Google Scholar 

  • Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett 12:1443–1447

    Article  Google Scholar 

  • Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  Google Scholar 

  • Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  • Drosdoff D, Phan AD, Woods LM (2014) Transverse electric mode for near-field radiative heat transfer in graphene-metamaterial systems. Adv Opt Mater 2:1038–1042

    Article  Google Scholar 

  • Efetov DK, Kim P (2010) Controlling electron-photon interactions in graphene at ultrahigh carrier densities. Phys Rev Lett 105:256805

    Article  Google Scholar 

  • Fan Y, Zhang F, Zhao Q, Wei Z, Li H (2014) Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt Lett 39:6269–6972

    Article  Google Scholar 

  • Fan Y, Shen NH, Koschny T, Soukoulis CM (2015) Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2:151–156

    Article  Google Scholar 

  • Fang Z, Liu Z, Wang Y, Ajayan PM, Nordlander P, Halas NJ (2012) Graphene-antenna sandwich photodetector. Nano Lett 12:3808–3813

    Article  Google Scholar 

  • Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonance. ACS Nano 6:7806–7813

    Article  Google Scholar 

  • Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  Google Scholar 

  • He Q, Wu S, Yin Z, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764–1772

    Article  Google Scholar 

  • Huang Z, Koschny T, Soukoulis CM (2012) Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium. Phys Rev Lett 108:187402

    Article  Google Scholar 

  • Jackson JD (1998) Classical electrodynamics. Wiley, New York

    Google Scholar 

  • Jiang T, Zhao J, Feng Y (2009) Stopping light by an air waveguide with anisotropic metamaterial cladding. Opt Express 17:170–177

    Article  Google Scholar 

  • Jo S, Ki DK, Jeong D, Lee HJ, Kettemann S (2011) Spin relaxation properties in graphene due to its linear dispersion. Phys Rev B 84:075453

    Article  Google Scholar 

  • Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  Google Scholar 

  • Koppens FHL, Chang DE, Javier Garcia de Abajo F (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370–3377

    Article  Google Scholar 

  • Lee SH, Choi M, Kim TT, Lee S, Liu M, Yin X, Choi HK, Lee SS, Choi CG, Choi SY, Zhang X, Min B (2012) Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater 11:936–941

    Article  Google Scholar 

  • Li ZQ, Henriksen EA, Jiang Z, Hao Z, Martin MC, Kim P, Stormer HL, Basov DN (2008) Dirac charge dynamics in graphene by infrared spectroscopy. Nat Phys 4:532–535

    Article  Google Scholar 

  • Lide DR (2003) Handbook of chemistry and physics. CRC Press, Tailor & Francis, US

    Google Scholar 

  • Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  Google Scholar 

  • Liu B, Sun Z, Zhang X, Liu J (2013) Mechanisms of DNA sensing on graphene oxide. Anal Chem 85:7987–7993

    Article  Google Scholar 

  • Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  Google Scholar 

  • Marqués R, Medina F, Rafii-El-Idrissi R (2002) Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 65:144440

    Article  Google Scholar 

  • Marqués R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE T Antenn Propag 51:2572–2581

    Article  Google Scholar 

  • Mattiucci N, D’Aguanno G, Alu A, Argyropoulos C, Foreman JV, Bloemer MJ (2012) Taming the thermal emissivity of metals: a metamaterial approach. Appl Phys Lett 100:201109

    Article  Google Scholar 

  • Mecklenburg M, Schuchardt A, Mishra YK, Kaps S, Adelung R, Lotnyk A, Kienle L, Schulte K (2012) Aerographite: ultra lightweight, flexible nanowall, carbon microtubes material with outstanding mechanical performance. Adv Mater 24:3486–3490

    Article  Google Scholar 

  • Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 23:2745–2750

    Article  Google Scholar 

  • Neto AC, Guniea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 80:109

    Article  Google Scholar 

  • Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427

    Article  Google Scholar 

  • Palik ED (1997) Handbook of optical constants of solids. Academic Press, San Diego

    Google Scholar 

  • Papasimakis N, Thongrattanasiri S, Zheludev NI, de Abajo FJG (2013) The magnetic response of graphene split-ring metamaterials. Light Sci Appl 2:e78

    Article  Google Scholar 

  • Ren X, Sha WEI, Choy WCH (2013) Tuning optical response of metallic dipole nanoantenna using graphene. Opt Express 21:31824–31829

    Article  Google Scholar 

  • Saenz E, Ikonen PMT, Gonzalo R, Tretyakov SA (2007) On the definition of effective permittivity and permeability for thin composite layers. J Appl Phys 101:114910

    Article  Google Scholar 

  • Shalaev VM (2007) Optical negative-index metamaterial. Nat Photonics 141-48(2007)

  • Shen NH, Tassin P, Koschny T, Soukoulis CM (2014a) Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator. Phys Rev B 90:115437

    Article  Google Scholar 

  • Shen NH, Tassin P, Koschny T, Soukoulis CM (2014b) Comparison of gold-and graphene based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator. Phys Rev B 90:115437

    Article  Google Scholar 

  • Singh R, Al-Naib IAI, Koch M, Zhang W (2011) Sharp Fano resonances in THz metamaterials. Opt Express 19:6312–6319

    Article  Google Scholar 

  • Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W (2014) Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl Phys Lett 105:171101

    Article  Google Scholar 

  • Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305:788–792

    Article  Google Scholar 

  • Sun D, Aivazian G, Jones AM, Ross JS, Yao W, Cobden D, Xu X (2012) Ultrafast hot-carrier-dominated photocurrent in graphene. Nat Nanotechnol 7:114–118

    Article  Google Scholar 

  • Tamayama Y, Nakanishi T, Kitano M (2012) Visible group delay in a metamaterial with field-gradient-induced transparency. Phys Rev B 85:073102

    Article  Google Scholar 

  • Tassin P, Koschny T, Kafesaki M, Soukoulis CM (2012) A comparison of graphene, superconductors, and metals as conductors for metamaterial and plasmonics. Nat Photonics 6:259–264

    Article  Google Scholar 

  • Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291–1294

    Article  Google Scholar 

  • Wang X, Cheng Z, Xu K, Tsang HK, Xu JB (2013) High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics 7:888–891

    Article  Google Scholar 

  • Wu MC, Deokar AR, Liao JH, Shih PY, Ling YC (2013) Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 7:1281–1290

    Article  Google Scholar 

  • Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8:318

    Article  Google Scholar 

  • Xiang G, Guo H, Zhang X, Sum TC, Huan CHA (2010) The physic of ultrafast saturable absorption in graphene. Opt Express 18:4564–4573

    Article  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalyst. Chem Soc Rev 41:782–796

    Article  Google Scholar 

  • Yan H, Xia F, Zhu W, Freitag M, Dimitrakopoulos C, Bol AA, Tulevski G, Avouris P (2011) Infrared spectroscopy of wafer-scale graphene. ACS Nano 5:9854–9860

    Article  Google Scholar 

  • Yang SH, Jarrahi M (2015) Frequency-tunable continuous-wave terahertz sources based on GaAs photomixers. Appl Phys Lett 107:131111

    Article  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: Theranostic applications. Chem Soc Rev 42:530–547

    Article  Google Scholar 

  • Yao Y, Kats MA, Genevet P, Yu N, Kong J, Capasso F (2013) Broad electrical tuning of graphene-loaded plasmonic nanoantennas. Nano Lett 13:1257–1264

    Article  Google Scholar 

  • Yao Y, Kats MA, Shankar R, Song Y, Kong J, Loncar M, Capasso F (2014) Wide wavelength tuning of optical antennas on graphene with nanosecond response time. Nano Lett 14:214–219

    Article  Google Scholar 

  • Zarrabi FB, Mohaghegh M, Bazgir M, Azezoomand AS (2016) Graphene-gold nano-ring antenna for dual-resonance optical application. Opt Mater 51:98–103

    Article  Google Scholar 

  • Zhang S, Park YS, Li J, Lu X, Zhang W, Zhang X (2009) Negative refractive index in chiral metamaterials. Phys Rev B 102:023901

    Google Scholar 

  • Zhang N, Zhang Y, Xu YJ (2012) Recent progress on graphene photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813

    Article  Google Scholar 

  • Zhao X, Zhang Z, Wang L, Xi K, Cao Q, Wang D, Yang Y, Du Y (2013) Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci Rep 3:3421

    Article  Google Scholar 

Download references

Acknowledgments

Raju Sinha gratefully acknowledges the financial support provided through dissertational year fellowship by the University Graduate School (UGS) at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ahmadivand.

Ethics declarations

Funding

This study was funded by NSF CAREER program with the award number 0955013, and by Army Research Laboratory (ARL) Multiscale Multidisciplinary Modeling of Electronic Materials (MSME) Collaborative Research Alliance (CRA) (Grant No. W911NF-12-2-0023, Program Manager: Dr. Meredith L. Reed).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadivand, A., Sinha, R., Karabiyik, M. et al. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators. J Nanopart Res 19, 3 (2017). https://doi.org/10.1007/s11051-016-3696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3696-3

Keywords

Navigation