Skip to main content
Log in

Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahn H et al (2014) Gelation of graphene oxides induced by different types of amino acids. Carbon 71:229–237. doi:10.1016/j.carbon.2014.01.033

    Article  Google Scholar 

  • Az’hari S, Ghayeb Y (2014) Effect of chirality, length and diameter of carbon nanotubes on the adsorption of 20 amino acids: a molecular dynamics simulation study. Mol Simul 40(5):392–398. doi:10.1080/08927022.2013.812210

    Article  Google Scholar 

  • Cao Y, Tao L, Wang J, Aslan H, Liu L, Dong M (2015) AFM study on amyloid peptide-graphene oxide assembly and its interaction with liposome. J Self-Assem Mol Electron 3

  • Cheng J, Zhu J, Liu B (2007) Molecular modeling investigation of adsorption of self-assembled peptide nanotube of cyclo-[(1R, 3S)-γ-Acc-d-Phe] 3 in CHCl 3. Chem Phys 333(2):105–111. doi:10.1016/j.chemphys.2007.01.014

    Article  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. doi:10.1039/B917103G

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. doi:10.1063/1.470117

    Article  Google Scholar 

  • Evans DJ, Holian BL (1985) The nose–hoover thermostat. J Chem Phys 83(8):4069–4074. doi:10.1063/1.449071

    Article  Google Scholar 

  • Feng L et al (2013) Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9(11):1989–1997. doi:10.1002/smll.201202538

    Article  Google Scholar 

  • Guo Y-N, Lu X, Weng J, Leng Y (2013) Density functional theory study of the interaction of arginine-glycine-aspartic acid with graphene, defective graphene, and graphene oxide. J Phys Chem C 117(11):5708–5717. doi:10.1021/jp310088e

    Article  Google Scholar 

  • He Z, Zhou J (2014) Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon 78:500–509. doi:10.1016/j.carbon.2014.07.031

    Article  Google Scholar 

  • Hughes ZE, Walsh TR (2015) What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B 3(16):3211–3221. doi:10.1039/C5TB00004A

    Article  Google Scholar 

  • Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU (2013) Interfacial shear strength of cured vinyl ester resin-graphite nanoplatelet from molecular dynamics simulations. Polymer 54(13):3282–3289. doi:10.1016/j.polymer.2013.04.035

    Article  Google Scholar 

  • Jang C, Nouranian S, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2012) Molecular dynamics simulations of oxidized vapor-grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon 50(3):748–760. doi:10.1016/j.carbon.2011.09.013

    Article  Google Scholar 

  • Kim H, Namgung R, Singha K, Oh I-K, Kim WJ (2011) Graphene oxide–polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22(12):2558–2567. doi:10.1021/bc200397j

    Article  Google Scholar 

  • Li S et al (2012) Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins. ACS Appl Mater Interfaces 4(12):7069–7075. doi:10.1021/am302704a

    Article  Google Scholar 

  • Lim SK, Chen P, Lee FL, Moochhala S, Liedberg B (2015) Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal Chem 87(18):9408–9412. doi:10.1021/acs.analchem.5b02270

    Article  Google Scholar 

  • Ma D, Lin J, Chen Y, Xue W, Zhang L-M (2012) In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon 50(8):3001–3007. doi:10.1016/j.carbon.2012.02.083

    Article  Google Scholar 

  • Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909. doi:10.1021/j100389a010

    Article  Google Scholar 

  • Nouranian S, Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2011) Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor-grown carbon nanofiber and their implications for composite interphase formation. Carbon 49(10):3219–3232. doi:10.1016/j.carbon.2011.03.047

    Article  Google Scholar 

  • Pandey RB, Kuang Z, Farmer B, Kim SS, Naik RR (2012) Stability of peptide (P1 and P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approach. Soft Matter 8(35):9101–9109. doi:10.1039/C2SM25870F

    Article  Google Scholar 

  • Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  Google Scholar 

  • Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95(8):3358–3363. doi:10.1021/j100161a070

    Article  Google Scholar 

  • Shi J et al (2015) A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin a (BoNT/a) enzymatic activity. Biosens Bioelectron 65:238–244. doi:10.1016/j.bios.2014.10.050

    Article  Google Scholar 

  • Shih C-J, Lin S, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648. doi:10.1021/ja1064284

    Article  Google Scholar 

  • Shuichi N (1991) Constant temperature molecular dynamics methods. Prog Theor Phys Suppl 103:1–46. doi:10.1143/PTPS.103.1

    Article  Google Scholar 

  • Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102(38):7338–7364. doi:10.1021/jp980939v

    Article  Google Scholar 

  • Sun X, Fan J, Zhang Y, Chen H, Zhao Y, Xiao J (2016) A graphene oxide-based FRET sensor for rapid and specific detection of unfolded collagen fragments. Biosens Bioelectron 79:15–21. doi:10.1016/j.bios.2015.12.004

    Article  Google Scholar 

  • Vovusha H, Sanyal S, Sanyal B (2013) Interaction of nucleobases and aromatic amino acids with graphene oxide and graphene flakes. J Phys Chem Lett 4(21):3710–3718. doi:10.1021/jz401929h

    Article  Google Scholar 

  • Wang C, Chen B, Zou M, Cheng G (2014) Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging. Colloids Surf B Biointerfaces 122:332–340. doi:10.1016/j.colsurfb.2014.07.018

    Article  Google Scholar 

  • Wang S et al (2003) Peptides with selective affinity for carbon nanotubes. Nat Mater 2(3):196–200. doi:10.1038/nmat833

    Article  Google Scholar 

  • Wei X-Q et al (2015) Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl Mater Interfaces 7(24):13367–13374. doi:10.1021/acsami.5b01874

    Article  Google Scholar 

  • Wolf SE et al (2007) Phase selection of calcium carbonate through the chirality of adsorbed amino acids. Angew Chem Int Ed 46(29):5618–5623. doi:10.1002/anie.200700010

    Article  Google Scholar 

  • Wu J et al (2015) Hierarchical construction of a mechanically stable peptide–graphene oxide hybrid hydrogel for drug delivery and pulsatile triggered release in vivo. Nanoscale 7(5):1655–1660. doi:10.1039/C4NR05798H

    Article  Google Scholar 

  • Xu Z, Yuan S-L, Yan H, Liu C-B (2011) Adsorption of histidine and histidine-containing peptides on Au (111): a molecular dynamics study. Colloids Surf Physicochem Eng Asp 380(1):135–142. doi:10.1016/j.colsurfa.2011.02.046

    Article  Google Scholar 

  • Yang L, Wang F, Han H, Yang L, Zhang G, Fan Z (2015) Functionalized graphene oxide as a drug carrier for loading pirfenidone in treatment of subarachnoid hemorrhage. Colloids Surf B Biointerfaces 129:21–29. doi:10.1016/j.colsurfb.2015.03.022

    Article  Google Scholar 

  • Zhang H et al (2011a) Effects of aqueous environment and surface defects on Arg-Gly-asp peptide adsorption on titanium oxide surfaces investigated by molecular dynamics simulation. J Biomed Mater Res A 96(2):466–476. doi:10.1002/jbm.a.33003

    Article  Google Scholar 

  • Zhang J et al (2014) Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids Surf B Biointerfaces 116:211–218. doi:10.1016/j.colsurfb.2014.01.003

    Article  Google Scholar 

  • Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011b) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7(4):460–464. doi:10.1002/smll.201001522

    Article  Google Scholar 

  • Zhang M, Yin B-C, Wang X-F, Ye B-C (2011c) Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun 47(8):2399–2401. doi:10.1039/C0CC04887A

    Article  Google Scholar 

  • Zhou T, Zhou X, Xing D (2014) Controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 35(13):4185–4194. doi:10.1016/j.biomaterials.2014.01.044

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Science Foundation (NSF) EPSCoR: Modeling and Simulation of Complex Systems Seed Research Grant Program through Mississippi State University under the award number EPS-0903787 (CFDA 47.081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Nouranian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, F., Nouranian, S., Mahdavi, M. et al. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities. J Nanopart Res 18, 320 (2016). https://doi.org/10.1007/s11051-016-3631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3631-7

Keywords

Navigation