Skip to main content
Log in

On-the-fly green generation and dispersion of AgI nanoparticles for cloud seeding nuclei

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study reports on an on-the-fly green synthesis/dispersion of silver iodide (AgI) nanoparticles from the combustion of AgIO3/carbon black (CB)/nitrocellulose (NC) composites, which could be used as a candidate for a cloud-seeding pyrotechnic. Films were formed by direct electrospray deposition of a mixture of synthesized silver iodate with CB and NC. The decomposition pathways of AgIO3/CB and AgIO3/CB/NC were evaluated by temperature jump time of flight mass spectrometry (T-jump TOFMS) and XRD, showing that AgI particles and CO2 are released from the reaction between AgIO3 and CB without other toxic residuals. The flame propagation velocity of AgIO3/CB/NC films increases with the increasing of particle mass loading of AgIO3 and CB and peaks at 40 wt%, which is much higher than that of an AgI/AP/NC film. The mean diameter of the resultant AgI nanoparticles is from 51 to 97 nm. The mass loading of AgIO3 and CB was found to play a major role in size control of the AgI nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Biswas KR, Dennis AS (1971) Formation of a rain shower by salt seeding. J Appl Meteorol 10:780–784

    Article  Google Scholar 

  • Blair D, Davis B, Dennis A (1973) Cloud chamber tests of generators using acetone solutions of AgI-NaI, AgI-KI and AgI-NH4I. J Appl Meteorol 12:1012–1017

    Article  Google Scholar 

  • Burley G (1963) Structure of hexagonal silver iodide. J Chem Phys 38:2807–2812. doi:10.1063/1.1733606

    Article  Google Scholar 

  • Changnon SA (1977) The scales of hail. J Appl Meteorol 16:626–648

    Article  Google Scholar 

  • DeMott PJ (1988) Comparisons of the behavior of AgI-type ice nucleating aerosols in laboratory- simulated clouds. J Chem Inf Model 20:44–50. doi:10.1017/CBO9781107415324.004

    Google Scholar 

  • Dennis AS (1980) Weather modification by cloud seeding. International Geophysics series, vol 24. Acadmic Press, New York, pp 96–133

    Google Scholar 

  • Egan GC, Sullivan KT, Lagrange T et al (2014) In situ imaging of ultra-fast loss of nanostructure in nanoparticle aggregates. J Appl Phys 115:084903. doi:10.1063/1.4867116

    Article  Google Scholar 

  • Federer B, Schneider A (1981) Properties of pyrotechnic nucleants used in grossversuch IV. J Appl Meteorol 20:997–1005

    Article  Google Scholar 

  • Guo X, Zheng G, Jin D (2006) A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide. Atmos Res 79:183–226. doi:10.1016/j.atmosres.2005.04.005

    Article  Google Scholar 

  • He Y, Wu F, Sun X et al (2013) Factors that affect pickering emulsions stabilized by graphene oxide. ACS Appl Mater Interfaces 5:4843–4855. doi:10.1021/am400582n

    Article  Google Scholar 

  • Hu X, DeLisio J, Li X, et al (2016) Direct deposit of highly reactive Bi(IO3)3- polyvinylidene fluoride biocidal energetic composite. Adv Eng Mater (In press)

  • Huang C, Jian G, DeLisio JB et al (2015) Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: a prelude to 3D printing of rocket motors. Adv Eng Mater 17:95–101. doi:10.1002/adem.201400151

    Article  Google Scholar 

  • Jian G, Chowdhury S, Sullivan K, Zachariah MR (2013) Nanothermite reactions: is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? Combust Flame 160:432–437. doi:10.1016/j.combustflame.2012.09.009

    Article  Google Scholar 

  • Li X, Guerieri P, Zhou W et al (2015) Direct deposit laminate nanocomposites with enhanced propellent properties. ACS Appl Mater Interfaces 7:9103–9109. doi:10.1021/acsami.5b00891

    Article  Google Scholar 

  • Liu W, Zhou J, Jin W et al (2011) A kind of late-model solid AgI composition which is vacuum casting and high temperature. Jianxi Sci 29:29–33 (In Chinese)

    Google Scholar 

  • Mather GK, Terblanche DE, Steffens FE, Fletcher L (1997) Results of the South African cloud-seeding experiments using hygroscopic flares. J Appl Meteorol 36:1433–1447. doi:10.1175/1520-0450(1997)036<1433:ROTSAC>2.0.CO;2

    Article  Google Scholar 

  • Meeks K, Pantoya ML, Apblett C (2014) Deposition and characterization of energetic thin films. Combust Flame 161:1117–1124. doi:10.1016/j.combustflame.2013.10.027

    Article  Google Scholar 

  • Orville HD (1996) A review of cloud modeling in weather modification. Bull Am Meteorol Soc 77:1535–1555

    Article  Google Scholar 

  • Orville HD, Farley RD, Hirsch JH (1984) Some surprising results from simulated seeding of stratiform-type clouds. J Clim Appl Meteorol 23:1585–1600

    Article  Google Scholar 

  • Pearce JN, Wirth VI (1933) The potential of the silver-silver iodate electrode at 25o. J Am Chem Soc 55(9):3569–3571

    Article  Google Scholar 

  • Ryan BF, King WD (1997) A critical review of the Australian experience in cloud seeding. Bull Am Meteorol Soc 78:239–254. doi:10.1175/1520-0477(1997)078<0239:ACROTA>2.0.CO;2

    Article  Google Scholar 

  • Sax RI, Garvey DM, Parungo FP (1979) Characteristics of AgI pyrotechnic nucleant used in NOAA’s Florida area cumulus experiment. J Appl Meteorol 18:195–202

    Article  Google Scholar 

  • Schaefer VJ (1946) The production of ice crystals in a cloud of supercooled water droplets. Science 104:457–459

    Article  Google Scholar 

  • Su Z (2008) A laboratory study on nucleating properties of silver iodide-type pyrotechnics. Nanjing University of Information Science and Technology (In Chinese)

  • Sullivan KT, Piekiel NW, Chowdhury S et al (2011) Ignition and combustion characteristics of nanoscale Al/AgIO3: a potential energetic biocidal system. Combust Sci Technol 183:285–302. doi:10.1080/00102202.2010.496378

    Article  Google Scholar 

  • Sullivan KT, Piekiel NW, Wu C et al (2012) Reactive sintering: an important component in the combustion of nanocomposite thermites. Combust Flame 159:2–15. doi:10.1016/j.combustflame.2011.07.015

    Article  Google Scholar 

  • Turns SR (2000) An introduction to combustion: concepts and applications, 2nd edn. McGraw-Hill Companies Inc, Boston, pp 1–620

    Google Scholar 

  • Vonnegut B (1947) The nucleation of ice formation by silver iodide. J Appl Phys 18:593–595. doi:10.1063/1.1697813

    Article  Google Scholar 

  • Weather Modification Association WMA (2009) Position statement on the environmental impact of using silver iodide as a cloud seeding agent. http://www.weathermodification.org/images/AGI_toxicity.pdf. Acessed July 2009

  • Wei Z, Jiangning W, Xiaoning R et al (2007) An investigation on thermal decomposition of DNTF-CMDB propellants. Propellants Explos Pyrotech 32:520–524. doi:10.1002/prep.200700052

    Article  Google Scholar 

  • Westrum F, Arbor A (1989) Heat capacity, thermodynamic properties, and transitions of silver iodide. J Chem Thermodyn 21:631–651

    Article  Google Scholar 

  • Yao X, Liu T, Liu X et al (2014) Loading of CdS nanoparticles on the (101) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting. Chem Eng J 255:28–39. doi:10.1016/j.cej.2014.06.055

    Article  Google Scholar 

  • Zenin A (1995) HMX and RDX—Combustion mechanism and influence on modern double-base propellant combustion. J Propuls Power 11:752–758. doi:10.2514/3.23900

    Article  Google Scholar 

  • Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2009) T-jump/time-of-flight mass spectrometry for time-resolved analysis of energetic materials. Rapid Commun Mass Spectrom 23:194–202

    Article  Google Scholar 

  • Zhou L, Piekiel N, Chowdhury S, Zachariah MR (2010) Time-resolved mass spectrometry of the exothermic reaction between nanoaluminum and metal oxides : the role of oxygen release. J Phys Chem C 114:14269–14275

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the Defence Threat Reduction Agency. Xiuli Hu is grateful for the financial support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Zachariah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 878 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhou, W., Wang, X. et al. On-the-fly green generation and dispersion of AgI nanoparticles for cloud seeding nuclei. J Nanopart Res 18, 214 (2016). https://doi.org/10.1007/s11051-016-3528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3528-5

Keywords

Navigation