Skip to main content
Log in

Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Addressing the challenges of using high-Curie temperature ferromagnetic (FM) electrodes is critical for molecular spintronics devices (MSDs) research. Two FM electrodes simultaneously chemically bonded with a thiol-functionalized molecule can produce novel MSDs to exploring new quantum mechanical phenomenon and computer technologies. For developing a commercially viable MSD, it is crucial to developing a device fabrication scheme that carefully considers FM electrodes’ susceptibility to oxidation, chemical etching, and stress-induced deformations during fabrication and usage. This paper studies NiFe, an alloy extensively used in present-day memory devices and high-temperature engineering applications, as a candidate FM electrode for the fabrication of MSDs. Our spectroscopic reflectance studies show that NiFe oxidized aggressively after heating beyond ~90 °C. The NiFe surfaces, aged for several months or heated for several minutes below ~90 °C, exhibited remarkable electrochemical activity and were found suitable for chemical bonding with the thiol-functionalized molecular device elements. NiFe also demonstrated excellent etching resistance against commonly used solvents and lithography related chemicals. Additionally, NiFe mitigated the adverse effects of mechanical stress by subsiding the stress-induced deformities. A magnetic tunnel junction-based MSD approach was designed by carefully considering the merits and limitations of NiFe. The device fabrication protocol considers the safe temperature limit to avoiding irreversible surface oxidation, the effect of mechanical stresses, surface roughness, and chemical etching. This paper provides foundational experimental insights in realizing a versatile MSD allowing a wide range of transport and magnetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7(3):179–186

    Article  Google Scholar 

  • Bruckner W, Baunack S, Hecker M, Thomas J, Groudeva-Zotova S, Schneider CM (2001a) Oxidation of NiFe(20 wt%) thin films. Mater Sci Eng B 86(3):272–275

    Article  Google Scholar 

  • Bruckner W, Thomas J, Schneider CM (2001b) Evolution of stress and microstructure in nife (20 wt%) thin films during annealing. Thin Solid Films 385(1–2):225–229. doi:10.1016/s0040-6090(01)00754-4

    Article  Google Scholar 

  • Brundle CR, Silverman E, Madix RJ (1979) Oxygen interaction with ni-fe surfaces (1) leed and xps studies of Ni 76-percent-Fe 24-percent (100). J Vac Sci Technol 16(2):474–477. doi:10.1116/1.569986

    Article  Google Scholar 

  • Cassie ABD (1948) Contact angles. Discuss Faraday Soc 3:11–16. doi:10.1039/df9480300011

    Article  Google Scholar 

  • Chenakin SP (1995) Initial oxidation-kinetics of fe-ni single-crystals before and after ion-bombardment. Appl Surf Sci 84(1):91–96. doi:10.1016/0169-4332(94)00471-4

    Article  Google Scholar 

  • Cheng L, Yang JP, Yao YX, Price DW, Dirk SM, Tour JM (2004) Comparative study of electrochemically directed assembly versus conventional self-assembly of thioacetyl-terminated oligo(phenylene ethynylene)s on gold and platinum surface. Langmuir 20(4):1335–1341

    Article  Google Scholar 

  • Coey JM (2010) Magnetism and magnetic materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Coronado E, Epsetin AJ (2009) Molecular spintronics and quantum computing. J Mater Chem 19(12):1670–1671

    Article  Google Scholar 

  • Fedorov A, Pershin YV, Piermarocchi C (2005) Spin-photovoltaic effect in quantum wires due to intersubband transitions. Phys Rev B 72(24):245327

    Article  Google Scholar 

  • Gobbi M, Pascual A, Golmar F, Llopis R, Vavassori P, Casanova F, Hueso LE (2012) C-60/nife combination as a promising platform for molecular spintronics. Org Electron 13(3):366–372

    Article  Google Scholar 

  • Golmar F, Gobbi M, Llopis R, Stoliar P, Casanova F, Hueso L (2012) Non-conventional metallic electrodes for organic field-effect transistors. Org Electron 13(11):2301–2306

    Article  Google Scholar 

  • Greco SE, Roux JP, Blakely JM (1982) Oxidation of the (100) surface of a Ni-Fe alloy. Surf Sci 120(1):203–222. doi:10.1016/0039-6028(82)90282-5

    Article  Google Scholar 

  • Heersche HB, De Groot Z, Folk JA, Van Der Zant HSJ, Romeike C, Wegewijs MR, Zobbi L, Barreca D, Tondello E, Cornia A (2006) Electron transport through single mn-12 molecular magnets. Phys Rev Lett 96(20):206801

    Article  Google Scholar 

  • Hu B (2011) Fabrication and study of molecular devices and photovoltaic devices by metal/dielectric/metal structures. Ph.D. thesis, University of Kentucky. (http://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1224&context=gradschool_diss)

  • Ingvarsson S, Xiao G, Parkin SSP, Gallagher WJ (2002) Thickness-dependent magnetic properties of Ni(81)Fe(19), Co(90)Fe(10) and Ni(65)Fe(15)Co(20) thin films. J Magn Magn Mater 251(2):202–206. doi:10.1016/s0304-8853(02)00577-2

    Article  Google Scholar 

  • Jurow M, Schuckman AE, Batteas JD, Drain CM (2010) Porphyrins as molecular electronic components of functional devices. Coord Chem Rev 254(19–20):2297–2310. doi:10.1016/j.ccr.2010.05.014

    Article  Google Scholar 

  • Kumar P (2010) Magnetic behavior of surface nanostructured 50-nm nickel thin films. Nanoscale Res Lett 5(10):1596–1602. doi:10.1007/s11671-010-9682-2

    Article  Google Scholar 

  • Kumar P, Krishna MG, Bhattacharya AK (2009) Effect of microstructural evolution on magnetic properties of ni thin films. Bull Mater Sci 32(3):263–270

    Article  Google Scholar 

  • Lad RJ, Blakely JM (1986) Breakup of oxide-films on a Ni-Fe(100) surface by s-2 impingement. Appl Surf Sci 27(3):318–328. doi:10.1016/0169-4332(86)90136-4

    Article  Google Scholar 

  • Lad RJ, Blakely JM (1987) Initial oxidation and sulfidation of a Ni60Fe40(100) alloy surface. Surf Sci 179(2–3):467–482. doi:10.1016/0039-6028(87)90070-7

    Article  Google Scholar 

  • Lad RJ, Schrott AG, Blakely JM (1984) Surface phases for sulfur and oxygen coadsorbed on Ni60Fe40(100). J Vac Sci Technol A 2(2):856–860. doi:10.1116/1.572526

    Article  Google Scholar 

  • Lad RJ, Schrott AG, Blakely JM (1985) Oxidation of Ni60Fe40(100) in the presence of sulfur. J Vac Sci Technol A 3(3):1282–1286. doi:10.1116/1.572526

    Article  Google Scholar 

  • Leuenberger MN, Loss D (2001) Quantum computing in molecular magnets. Nature 410(6830):789–793

    Article  Google Scholar 

  • Li DF, Parkin S, Wang GB, Yee GT, Clerac R, Wernsdorfer W, Holmes SM (2006a) An s = 6 cyanide-bridged octanuclear (Fe4Ni4ii)-Ni-iii complex that exhibits slow relaxation of the magnetization. J Am Chem Soc 128(13):4214–4215

    Article  Google Scholar 

  • Li DF, Ruschman C, Clerac R, Holmes SM (2006b) Ancillary ligand functionalization of cyanide-bridged s = 6 Feiii4Niii4 complexes for molecule-based electronics. Inorg Chem 45(13):7569

    Article  Google Scholar 

  • Luber SM, Strobel S, Tranitz HP, Wegscheider W, Schuh D, Tornow M (2005) Nanometre spaced electrodes on a cleaved AlGaAs surface. Nanotechnology 16(8):1182–1185

    Article  Google Scholar 

  • Miao GX, Munzenberg M, Moodera JS (2011) Tunneling path toward spintronics. Rep Prog Phys 74:036501

    Article  Google Scholar 

  • Misiorny M, Barnas J (2007) Spin polarized transport through a single-molecule magnet: current-induced magnetic switching. Phys Rev B 76(5):054448. doi:10.1103/PhysRevB.76.054448

    Article  Google Scholar 

  • Parkin S (2006) Spin-polarized current in spin valves and magnetic tunnel junctions. MRS Bull 31(5):389–394

    Article  Google Scholar 

  • Pasupathy AN, Bialczak RC, Martinek J, Grose JE, Donev LAK, Mceuen PL, Ralph DC (2004) The kondo effect in the presence of ferromagnetism. Science 306(5693):86–89

    Article  Google Scholar 

  • Petta JR, Slater SK, Ralph DC (2004) Spin-dependent transport in molecular tunnel junctions. Phys Rev Lett 93(13):136601

    Article  Google Scholar 

  • Salou M, Lescop B, Rioual S, Lebon A, Youssef JB, Rouvellou B (2008) Initial oxidation of polycrystalline permalloy surface. Surf Sci 602(17):2901–2906. doi:10.1016/j.susc.2008.07.012

    Article  Google Scholar 

  • Salou M, Rioual S, Lescop B, Calvez B, Nguyen-Vien G, Rouvellou B (2009) High-temperature oxidation of permalloy in air. Corros Sci 51(4):703–706. doi:10.1016/j.corsci.2009.02.003

    Article  Google Scholar 

  • Tyagi P (2008) Fabrication and characterization of molecular spintronics devices. Ph.D. thesis, University of Kentucky. (http://archive.uky.edu/handle/10225/878)

  • Tyagi P (2009) Molecular spin devices: current understanding and new territories. Nano 4(6):325–338

    Article  Google Scholar 

  • Tyagi P (2011) Multilayer edge molecular electronics devices: a review. J Mater Chem 21(13):4733–4742. doi:10.1039/c0jm03291c

    Article  Google Scholar 

  • Tyagi P (2012) Fabrication of tunnel junction based molecular electronics and spintronics devices. J Nanopart Res 14(10):1195

    Article  Google Scholar 

  • Tyagi P, Hinds BJ (2010) Mechanism of ultrathin tunnel barrier failure due to mechanical stress induced nano-sized hillocks and voids. J Vac Sci Technol B 28(5):517–521

    Article  Google Scholar 

  • Tyagi P, Li DF, Holmes SM, Hinds BJ (2007) Molecular electrodes at the exposed edge of metal/insulator/metal trilayer structures. J Am Chem Soc 129(16):4929–4938

    Article  Google Scholar 

  • Tyagi P, Friebe E, Baker C (2015a) Advantages of prefabricated tunnel junction based molecular spintronics devices. NANO 10(3):1530002. doi:10.1142/S1793292015300029

    Article  Google Scholar 

  • Tyagi P, Baker C, D’angelo C (2015b) Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device. Nanotechnology 26:305602

    Article  Google Scholar 

  • Tyagi P, D’angelo C, Baker C (2015c) Monte Carlo and experimental magnetic studies of molecular spintronics devices. NANO 10(4):1550056. doi:10.1142/S1793292015500563

    Article  Google Scholar 

  • Wu H, Wang L-S (1997) A study of nickel monoxide (NiO), nickel dioxide (ONiO), and ni (O2) complex by anion photoelectron spectroscopy. J Chem Phys 107(1):16–21

    Article  Google Scholar 

  • Yamada R, Noguchi M, Tada H (2011) Magnetoresistance of single molecular junctions measured by a mechanically controllable break junction method. Appl Phys Lett 98(5):053110. doi:10.1063/1.3549190

    Article  Google Scholar 

  • Zhu M, McMichael RD (2010) Modification of edge mode dynamics by oxidation in Ni80Fe20 thin film edges. J Appl Phys 107(10):5. doi:10.1063/1.3393966

    Google Scholar 

  • Zhu J-GJ, Park C (2006) Magnetic tunnel junctions. Mat Today 9(11):36–45

    Article  Google Scholar 

  • Zwolak M, Di Ventra M (2002) DNA spintronics. Appl Phys Lett 81(5):925–927

    Article  Google Scholar 

Download references

Acknowledgments

A part of this study was supported by the National Science Foundation-Research Initiation Award (Contract # HRD-1238802), Department of Energy/National Nuclear Security Agency subaward (Subaward No. 0007701-1000043016). We thank the Air Force Office of Sponsored Research (Award #FA9550-13-1-0152) for facilitating the study of ferromagnetic electrode stability by providing instrumentation support. We also acknowledge the support from NIST’s Center of Nanoscience and Technology in facilitating the experimental studies in this paper. Pawan Tyagi thanks Dr. Bruce Hinds and the Department of Chemical and Materials Engineering at University of Kentucky for facilitating experimental work on tunnel junction-based molecular devices during Ph.D. Molecules for molecular device fabrication were produced by Dr. Stephen Holmes’s group. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of any funding agency and corresponding author’s past and present affiliations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, P., Friebe, E. & Baker, C. Addressing the challenges of using ferromagnetic electrodes in the magnetic tunnel junction-based molecular spintronics devices. J Nanopart Res 17, 452 (2015). https://doi.org/10.1007/s11051-015-3261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3261-5

Keywords

Navigation