Skip to main content
Log in

Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

ZnO nanoparticles (NP) with different morphologies such as nanorods (NR), isotropic NP, and cloud-like (CL) structures have been synthesized by an organometallic route. The prepared ZnO nanostructures have been deposited on miniaturized silicon gas sensor substrates by an inkjet method, and their responses to CO, C3H8, and NH3 gases have been studied at different operating temperatures (340–500 °C) and relative humidity of 50 %. It is noteworthy that the morphology of the nanostructure of the sensitive layer is maintained after thermal treatment. The morphology of ZnO NP significantly influences the sensor response level and their selectivity properties to reducing gases. Among the three different ZnO types, sensors prepared with NR show the highest response to both CO and C3H8. Sensors made of isotropic NP and CL structures show a lower but similar response to CO. From all investigated nanostructures, sensors made of CL structures show the weakest response to C3H8. With NH3 gas, no effect of the morphology of the ZnO sensitive layer has been evidenced. These different responses highlight the important role of the nanostructure of the ZnO sensitive layer and the nature of the target gas on the detection properties of the sensors.

Graphical Abstract

Three different ZnO nanoparticles morphologies (cloud-like, dots, rods) have been employed as sensitive layers in chemoresistive sensors for the selective detection of CO, C3H8 and NH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bai S, Liu X, Li D, Chen S, Luo R, Chen A (2011) Synthesis of ZnO nanorods and its application in NO2 sensors. Sens Actuator B 153(1):110–116

    Article  Google Scholar 

  • Benkstein KD, Raman B, Lahr DL, Bonevich JE, Semancik S (2009) Inducing analytical orthogonality in tungsten oxide-based microsensors using materials structure and dynamic temperature control. Sens Actuator B B137(1):48–55

    Article  Google Scholar 

  • Chand Singh R, Singh O, Pal Singh M, Singh Chandi P (2008) Synthesis of zinc oxide nanorods and nanoparticles by chemical route and their comparative study as ethanol sensors. Sens Actuator B 135:352–357

    Article  Google Scholar 

  • Chaudret B (2005) Organometallic approach to nanoparticles synthesis and self-organization. C. R. Phys 6(1):117–131

    Article  Google Scholar 

  • Chen D, Hou X, Li T, Fan D, Wang H, Li X, Xu H, Lu H, Zhang R, Sun J (2011) Effects of morphologies on acetone-sensing properties of tungsten trioxide nanocrystals. Sens Actuator B 153(2):373–381

    Article  Google Scholar 

  • Cobden PD, Nieuwenhuys BE, Gorodetskii VV (1999) Adsorption of some small molecules on a Pd field emitter. Appl Catal A 188(1–2):69–77

    Article  Google Scholar 

  • Coppel Y, Spataro G, Pagès C, Chaudret B, Maisonnat A, Kahn ML (2012) Full characterization of colloidal solutions of long-alkyl-chain-amine-stabilized ZnO nanoparticles by NMR spectroscopy: surface state, equilibria, and affinity. Chem Eur J 18(17):5384–5393

    Article  Google Scholar 

  • Geng B, Fang C, Zhan F, Yu N (2008) Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gas-sensing properties. Small 4(9):1337–1343

    Article  Google Scholar 

  • Goepel W, Schierbaum KD (1995) SnO2 sensors: current status and future prospects. Sens Actuator B 26(1–3):1–12

    Article  Google Scholar 

  • Gupta SK, Joshi A, Kaur M (2010) Development of gas sensors using ZnO nanostructures. J Chem Soc 122(1):57–62

    Google Scholar 

  • Heilig A, Weimar U, Schweizer-Berberich M, Gardner JW, Gopel W (1997) Gas identification by modulating temperatures of SnO2-based thick film sensors. Sens Actuator B 43(1–3):45–51

    Article  Google Scholar 

  • Kahn ML, Collière V, Senocq F, Maisonnat A, Chaudret B (2005) Size- and shape-control of crystalline zinc oxide nanoparticles: a new organometallic synthetic method. Adv Funct Mater 15(3):458–468

    Article  Google Scholar 

  • Katoch A, Sun G-J, Choi S-W, Byun J-H, Kim SS (2013) Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens Actuator B 185:411–416

    Article  Google Scholar 

  • Kolodziejczak-Radzimska A, Jesionowski T (2014) ZnO Oxide-from synthesis to application: a review. Materials 7:2833–2881

    Article  Google Scholar 

  • Le VT, Le TNL, Nguyen VH (2010) Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sens Actuator B 150(1):112–119

    Article  Google Scholar 

  • Liao F, Huang Y, Ge J, Zheng W, Tedsree K, Collier P, Hong X (2011) Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 50(9):2162–2165

    Article  Google Scholar 

  • Liu X, Liu J, Chang Z, Sun X, Li Y (2011) Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation. Catal Commun 12(6):530–534

    Article  Google Scholar 

  • Menini Ph, Chalabi H, Yaboue NP, Scheid E, Conedera V, Salvagnac L, Aguir K (2008) High performances of new microhotplate for gas sensors. Eurosensors XXII, Dresde

    Google Scholar 

  • Ozawa K, Hasagawa T, Edamoto K, Takahashi K, Kamada M (2002) Adsorption state and molecular orientation of ammonia on ZnO \(( 10 \bar{1}0)\) studied by photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. J Phys Chem B 106(36):9380–9386

    Article  Google Scholar 

  • Rai P, Kwak W-K, Yu Y-T (2013) Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties. Appl Mater Interfaces 5:3026–3032

    Article  Google Scholar 

  • Rout CS, Hegde M, Govindaraj A, Rao CNR (2007) Ammonia sensors based on metal oxide nanostructures. Nanotechnology 18(20):205504/1–205504/9

    Article  Google Scholar 

  • Ryzhikov A, Labeau M, Gaskov A (2005) Al2O3 (M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors. Sens Actuator B 109(1):91–96

    Article  Google Scholar 

  • Scarano D, Spoto G, Bordiga S, Zecchina A (1992) Lateral interactions in CO adlayers on prismatic ZnO faces: a FTIR and HRTEM study. Surf Sci 276:281–298

    Article  Google Scholar 

  • Shaalan NM, Yamazaki T, Kikuta T (2011) Influence of morphology and structure geometry on NO2 gas-sensing characteristics of SnO2 nanostructures synthesized via a thermal evaporation method. Sens Actuator B 153(1):11–16

    Article  Google Scholar 

  • Simon I, Barsan N, Bauer M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuator B 73(1):1–26

    Article  Google Scholar 

  • Wang D, Kang Y, Doan-Nguyen V, Chen J, Kungas R, Wieder NL, Bakhmutsky K, Gorte RJ, Murray CB (2011) Synthesis and oxygen storage capacity of two-dimensional ceria nanocrystals. Angew Chem Int Ed 50(19):4378–4381

    Article  Google Scholar 

  • Weimar U, Goepel W (1998) Chemical imaging: II. Trends in practical multiparameter sensor systems. Sens Actuator B 52(1–2):143–161

    Article  Google Scholar 

  • Wu C, Zhu X, OuYang C, Xie Y (2006) Synthesis of Hematite (α-Fe2O3) Nanorods: diameter-size and shape tffects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110(36):17806–17812

    Article  Google Scholar 

  • Xu J, Zhang Y, Chen Y, Xiang Q, Pan Q, Shi L (2008) Uniform ZnO nanorods can be used to improve the response of ZnO gas sensor. Mater Sci Eng B 150(1):55–60

    Article  Google Scholar 

  • OSHA Permissible Exposure Limits (PELs). https://www.osha.gov/dsg/topics/pel/

  • Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sens Actuator 4(2):283–289

    Article  Google Scholar 

  • Yu L, Fan X, Qi L, Ma L, Yan W (2011) Dependence of morphologies for SnO2 nanostructures on their sensing property. Appl Surf Sci 257(7):3140–3144

    Article  Google Scholar 

  • Zhang W-D, Zhang W-H, Ma X-Y (2009) Tunable ZnO nanostructures for ethanol sensing. J Mater Sci 44(17):4677–4682

    Article  Google Scholar 

  • Zhao Q, Shen Q, Yang F, Zhao H, Liu B, Liang Q, Wei A, Yang H, Liu S (2014) Direct growth of ZnO nanodisk networks with an exposed (0001) facet on Au comb-shaped interdigitating electrodes and the enhanced gas-sensing property of polar (0001) surfaces. Sens Actuator B 195:71–79

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Région Midi Pyrénées, and PRES Université de Toulouse in the frame of the NELI (Nez Electronique Intégré) project. We also thank CNRS, Université Toulouse III Paul Sabatier, and Alpha MOS SA for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Fau.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhikov, A., Jońca, J., Kahn, M. et al. Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology. J Nanopart Res 17, 280 (2015). https://doi.org/10.1007/s11051-015-3086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3086-2

Keywords

Navigation