Skip to main content
Log in

Immobilization of DNA on Fe nanoparticles and their hybridization to functionalized surface

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Magnetic Fe nanoparticles were fabricated using a magnetron–sputtering-based gas-phase condensation method, and they have an average size of 20 nm. The Fe nanoparticles were modified by 3-aminopropyltriethoxy silane, and were subsequently activated by glutaraldehyde, and then amino modified DNA oligomers were loaded on glutaraldehyde activated Fe nanoparticles. Their surface was investigated and confirmed by X-ray photoelectron spectroscopy (XPS). The concentrations of 3-aminopropyltriethoxy silane and glutaraldehyde play important roles for subsequent DNA immobilization, and their optimal concentrations are 0.5 vol% and 5.0 wt%, respectively. The loading level of DNA oligomers on Fe nanoparticles was quantitatively evaluated. We found that the presence of sodium dodecyl sulfate (SDS) surfactant can significantly increase the DNA loading level and the highest loading value reached to 47 mol DNA/mol Fe nanoparticles. The DNA–Fe complexes can be selectively hybridized to the DNA functionalized surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Article  CAS  Google Scholar 

  • Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Schultz PG (1996) Organization of nanocrystal molecules using DNA. Nature 382:609–611

    Article  CAS  Google Scholar 

  • Bai J, Xu YH, Wang JP (2007) Cubic and spherical high-moment FeCo nanoparticles with narrow size distribution. IEEE Trans Magn 43:3340–3342

    Article  CAS  Google Scholar 

  • Berti L, Woldeyesus T, Li Y, Lam KS (2010) Maximization of loading and stability of ssDNA:iron oxide nanoparticle complexes formed through electrostatic interaction. Langmuir 26:18293–18299

    Article  CAS  Google Scholar 

  • Cai H, Zhu N, Jiang Y, He P, Fang Y (2003) Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 18:1311–1319

    Article  CAS  Google Scholar 

  • Demortiere A, Panissod P, Pichon BP, Pourroy G, Guillon D, Donnio B, Begin-Colin S (2011) Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 3:225–232

    Article  CAS  Google Scholar 

  • Devi GR (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13:819–829

    Article  CAS  Google Scholar 

  • Dumestre F, Chaudret B, Amiens C, Renaud P, Peter F (2004) Superlattices of iron nanocubes synthesized from Fe[N(SiMe3)2]2. Science 303:821–823

    Article  CAS  Google Scholar 

  • Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    Article  CAS  Google Scholar 

  • Grancharov SG, Zeng H, Sun S, Wang SX, Brien SO, Murry CB, Kirtley JR, Held GA (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 109:13030–13035

    Article  CAS  Google Scholar 

  • Guo SJ, Dong SJ (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. Trends Anal Chem 28:96–109

    Article  CAS  Google Scholar 

  • Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318

    Article  CAS  Google Scholar 

  • Isabelle M, Catherine D, Michel JB, Karen CW (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802

    Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  • Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated grapheme. Nanoscale 3:3583–3585

    Article  CAS  Google Scholar 

  • Kakibe S, Ohta I, Takahashi M (2005) Controlled monodisperse Fe nanoparticles synthesized by chemical method. IEEE Trans Magn 41:3391–3393

    Article  Google Scholar 

  • Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron 24:676–683

    Article  CAS  Google Scholar 

  • Kerekes L, Hakl J, Meszaros S, Vad K, Gurin P, Kis-Varga M, Uzonyi I, Szabo S, Beke DL (2002) Study of magnetic relaxation in partially oxidized nanocrystalline iron. Czech J Phys 52:89–92

    Article  Google Scholar 

  • LaConte L, Nitin N, Bao G (2005) Magnetic nanoparticle probes. Mater Today 8:32–38

    Article  Google Scholar 

  • Lacroix LM, Lachaize S, Falqui A, Respaud M, Chaudret B (2009) Iron nanoparticle growth in organic superstructures. J Am Chem Soc 131:549–557

    Article  CAS  Google Scholar 

  • Lee JS, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle–oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    Article  CAS  Google Scholar 

  • Li F, Vipulanandan C, Mohanty KK (2003) Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids Surf A 223:103–112

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Li K, Lai Y, Zhang W, Jin L (2011) Fe2O3@Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84:607–613

    Article  CAS  Google Scholar 

  • Liu S, Zhang Z, Han M (2005) Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal Chem 77:2595–2600

    Article  CAS  Google Scholar 

  • Mahtab R, Harden HH, Murphy CJ (2000) Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”-DNA interactions. J Am Chem Soc 122:14–17

    Article  CAS  Google Scholar 

  • Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L, Piedade M, Freitas PP, Fonseca LP (2009) Femtomolar limit of detection with a magnetoresistive biochip. Biosens Bioelectron 24:2690–2695

    Article  CAS  Google Scholar 

  • Moisala A, Nasibulin AG, Kauppinen E (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes-a review. J Phys: Condens Matter 15:S3011

    Article  CAS  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    Article  CAS  Google Scholar 

  • Mrikin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  Google Scholar 

  • Nam JW, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  CAS  Google Scholar 

  • Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2010) Reduction of Se(VI) to Se(II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 12:2057–2068

    Article  CAS  Google Scholar 

  • Peng S, Wang C, Xie J, Sun S (2006) Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 128:10676–10677

    Article  CAS  Google Scholar 

  • Qiang Y, Antony J, Sharma A, Pendyala S, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core–shell nanoclusters for biomedical applications. J Nanopart Res 8:489–496

    Article  CAS  Google Scholar 

  • Robinson DB, Persson HHJ, Zeng H, Li GX, Pourmand N, Sun S, Wang SX (2005) DNA-functionalized MFe2O4 (M=Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. Langmuir 21:3096–3103

    Article  CAS  Google Scholar 

  • Robinson I, Tung LD, Maenosono S, Walti C, Thanh NTK (2010) Synthesis of core–shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2:2624–2630

    Article  CAS  Google Scholar 

  • Ruiz-Hernandez E, Baeza A, Vallet-Regi M (2011) Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 5:1259–1266

    Article  CAS  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  CAS  Google Scholar 

  • Shavel A, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzan LM (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17:3870–3876

    Article  CAS  Google Scholar 

  • Shen H, Yang X, Gao M, Jia N, Wang F, Zhao N (2007) Development of a magnetic nanoparticle-based artificial cleavage reagent for site-selective cleavage of single-stranded DNA. Chem Mater 19:3090–3092

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13:4063–4073

    Article  CAS  Google Scholar 

  • Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8:2172–2179

    Article  CAS  Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  Google Scholar 

  • Vitta Y, Piscitelli V, Fernandez A, Gonzalez-Jimenez F, Castillo J (2011) α-Fe nanoparticles produced by laser ablation: optical and magnetic properties. Chem Phys Lett 512:96–98

    Article  CAS  Google Scholar 

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Article  CAS  Google Scholar 

  • Wang JP (2008) FePt magnetic nanoparticles and their assembly for future magnetic media. Proc IEEE 96:1847–1863

    Article  CAS  Google Scholar 

  • Wang JP, Qiu JM, Taton TA, Kim B (2006) Direct preparation of highly ordered L10 phase FePt nanoparticles and their shape-assisted assembly. IEEE Trans Magn 42:3042–3047

    Article  CAS  Google Scholar 

  • Wang C, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131:8824–8832

    Article  CAS  Google Scholar 

  • Wilcoxon JP, Provencio PP (1999) Use of surfactant micelles to control the structural phase of nanosize iron clusters. J Phys Chem B 103:9809–9812

    Article  CAS  Google Scholar 

  • Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16:1278–1294

    Article  CAS  Google Scholar 

  • Xu YH, Bai J, Wang JP (2007) High-magnetic-moment multifunctional nanoparticles for nanomedicine applications. J Magn Magn Mater 311:131–134

    Article  CAS  Google Scholar 

  • Xue Q, Wang L, Jiang W (2012) A versatile platform for highly sensitive detection of protein: DNA enriching magnetic nanoparticles based rolling circle amplification immunoassay. Chem Commun 48:3930–3932

    Article  CAS  Google Scholar 

  • Yamamuro S, Ando T, Sumiyama K, Uchida T, Kojima I (2004) Monodisperse metallic iron nanoparticles synthesized from noncarbonyl complex. Jpn J Appl Phys 43:4458–4459

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhu N, Zhang A, Wang Q, He P, Fang Y (2004) Lead sulfide nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. Electroanalysis 16:577–582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this study were carried out in the Characterization Facility, University of Minnesota, which receives partial support from National Science Foundation through the MRSEC program. Wei Wang also acknowledges the financial support from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ping Wang or Jian-Ping Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., He, S., Jing, Y. et al. Immobilization of DNA on Fe nanoparticles and their hybridization to functionalized surface. J Nanopart Res 15, 1722 (2013). https://doi.org/10.1007/s11051-013-1722-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1722-2

Keywords

Navigation