Skip to main content
Log in

Enhanced removal of chromate from aqueous solution by sequential adsorption–reduction on mesoporous iron–iron oxide nanocomposites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The adsorption behavior of mesoporous iron nanocomposites was investigated with respect to chromate [Cr(VI)] removal from aqueous solutions to consider its application for purifying chromate-contaminated wastewaters. These nanocomposites were prepared by borohydride reduction in aqueous solutions containing varying concentrations of acetone as co-solvent. Using batch methods, enhanced adsorption of Cr(VI) on the nanocomposite surface was achieved at neutral pH conditions, which subsequently resulted in Cr(VI) reduction to Cr(III). The Langmuir model was found to excellently describe the adsorption process, offering a maximum adsorptive capacity of 34.1 mg/g for composites prepared with 50 % acetone concentration. The Cr(VI) removal efficiency of these iron nanocomposites is strongly dependent on the acetone concentration, as evident from their (1) increased surface area (141.1 m2/g) compared to conventional iron nanoparticles (33.2 m2/g), and (2) highly porous and acicular structure, which efficiently traps Cr(VI) through adsorption. X-ray photoelectron spectroscopy analysis of Cr(III) on the nanocomposite surface confirmed that Cr(VI) removal from solution was achieved by sequential adsorption–reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alowitz MJ, Scherer MM (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2010) Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 44:7232–7237

    Article  CAS  Google Scholar 

  • Bond DL, Fendorf S (2003) Kinetics and structural constraints of chromate reduction by green rusts. Environ Sci Technol 37:2750–2757

    Article  CAS  Google Scholar 

  • Bonder MJ, Zhang Y, Kiick KL, Papaefthymiou V, Hadjipanayis GC (2007) Controlling synthesis of Fe nanoparticles with polyethylene glycol. J Magn Magn Mater 311:658–664

    Article  CAS  Google Scholar 

  • Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20

    Article  CAS  Google Scholar 

  • Chang LY (2005) Chromate reduction in wastewater at different pH levels using thin iron wires—a laboratory study. Environ Prog 24:305–316

    Article  CAS  Google Scholar 

  • Chen SS, Cheng CY, Li CW, Chai PH, Chang YM (2007) Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. J Hazard Mater 142:362–367

    Article  CAS  Google Scholar 

  • Chiron N, Guilet R, Deydier E (2003) Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Res 37:3079–3086

    Article  CAS  Google Scholar 

  • Eisazadeh H (2007) Removal of chromium from waste water using polyaniline. J Appl Polym Sci 104:1964–1967

    Article  CAS  Google Scholar 

  • Fendorf SE, Li G (1996) Kinetics of chromate reduction by ferrous iron. Environ Sci Technol 30:1614–1617

    Article  CAS  Google Scholar 

  • Flury B, Frommer J, Eggenberger U, Mäder U, Nachtegaal M, Kretzschmar R (2009) Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ Sci Technol 43:6786–6792

    Article  CAS  Google Scholar 

  • Gillham RW, Ohannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero valent iron. Ground Water 32:958–967

    Article  CAS  Google Scholar 

  • Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35

    Article  CAS  Google Scholar 

  • Gupta S, Babu BV (2009) Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions: equilibrium, kinetics, and regeneration studies. J Environ Manage 90:3013–3022

    Article  CAS  Google Scholar 

  • Jeen SW, Blowes DW, Gillham RW (2008) Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions. J Contam Hydrol 95:76–91

    Article  CAS  Google Scholar 

  • Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198

    Article  CAS  Google Scholar 

  • Kanel SR, Choi H (2007) Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol 55:157–162

    CAS  Google Scholar 

  • Kayser MM, Eliev S, Eisenstein O (1982) Reduction of ketones by sodium borohydride in the absence of protic solvents. Inter versus intramolecular mechanism. Tetrahedron Lett 24:1015–1018

    Article  Google Scholar 

  • Kendelewicz T, Liu P, Doyle CS, Brown GE Jr (2000) Spectroscopic study of the reaction of aqueous Cr(VI) with Fe3O4(111) surfaces. Surf Sci 469:144–163

    Article  CAS  Google Scholar 

  • Kim JH, Tratnyek PG, Chang YS (2008) Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron. Environ Sci Technol 42:4106–4112

    Article  CAS  Google Scholar 

  • Kowalski Z (1994) Treatment of chromic tannery wastes. J Hazard Mater 37:137–141

    Article  CAS  Google Scholar 

  • Lee JM, Kim JH, Lee JW, Kim JH, Lee HS, Chang YS, Nurmi JT, Tratnyek PG (2008) Synthesis of Fe-nano particles obtained by borohydride reduction with solvent. In: International conference on remediation of chlorinated and recalcitrant compounds

  • Legrand L, El Figuigui A, Mercier F, Chausse A (2004) Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: kinetic and mechanistic studies. Environ Sci Technol 38:4587–4595

    Article  CAS  Google Scholar 

  • Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zero valent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  Google Scholar 

  • Liu Y, Phenrat T, Lowry GV (2007) Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environ Sci Technol 41:7881–7887

    Article  CAS  Google Scholar 

  • Loyaux-Lawniczak S, Refait P, Ehrhardt JJ, Lecomte P, Génin JMR (2000) Trapping of Cr by formation of ferrihydrite during the reduction of chromate ions by Fe(II)–Fe(III) hydroxysalt green rusts. Environ Sci Technol 34:438–443

    Article  CAS  Google Scholar 

  • Ludwig RD, Su C, Lee TR, Wilkin RT, Acree SD, Ross RR, Keeley A (2007) In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environ Sci Technol 41:5299–5305

    Article  CAS  Google Scholar 

  • Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209

    Article  CAS  Google Scholar 

  • Margeat O, Dumestre F, Amiens C, Chaudret B, Lecante P, Respaud M (2005) Synthesis of iron nanoparticles: size effects, shape control and organisation. Prog Solid State Chem 33:71–79

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053

    Article  CAS  Google Scholar 

  • Park SJ, Jang YS (2002) Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci 249:458–463

    Article  CAS  Google Scholar 

  • Periasamy M, Thirumalaikumar M (2000) Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. J Organomet Chem 609:137–151

    Article  CAS  Google Scholar 

  • Pettine M, D’Ottone L, Campanella L, Millero FJ, Passino R (1998) The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim Cosmochim Acta 62:1509–1519

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  CAS  Google Scholar 

  • Pike J, Hanson J, Zhang L, Chan SW (2007) Synthesis and redox behavior of nanocrystalline Hausmannite (Mn3O4). Chem Mater 19:5609–5616

    Article  CAS  Google Scholar 

  • Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Pratt AR, Blowes DW, Ptacek CJ (1997) Products of chromate reduction on proposed subsurface remediation material. Environ Sci Technol 31:2492–2498

    Article  CAS  Google Scholar 

  • Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyjaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494

    Article  CAS  Google Scholar 

  • Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified fe0 < nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–3355

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Sedlak DL, Chan PG (1997) Reduction of hexavalent chromium by ferrous iron. Geochim Cosmochim Acta 61:2185–2192

    Article  CAS  Google Scholar 

  • Shen YF, Zerger RP, DeGuzman RN, Suib SL, McCurdy L, Potter DI, O’Young CL (1993) Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science 260:511–515

    Article  CAS  Google Scholar 

  • Shi LN, Zhang X, Chen ZL (2011) Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  Google Scholar 

  • Taghavy A, Costanza J, Pennell KD, Abriola LM (2010) Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. J Contam Hydrol 118:128–142

    Article  CAS  Google Scholar 

  • Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem Eur J 9:300–306

    Article  Google Scholar 

  • Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wang W, Jin Zh, Tl Li, Zhang H, Gao S (2006) Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 65:1396–1404

    Article  CAS  Google Scholar 

  • Wang Q, Snyder S, Kim J, Choi H (2009) Aqueous ethanol modified nanoscale zerovalent iron in Bromate reduction: synthesis, characterization, and reactivity. Environ Sci Technol 43:3292–3299

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  CAS  Google Scholar 

  • Yalçin S, Apak R (2004) Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent. Anal Chim Acta 505:25–35

    Article  Google Scholar 

  • Zachara JM, Girvin DC, Schmidt RL, Thomas Resch C (1987) Chromate adsorption on amorphous iron oxyhydroxide in the presence of major groundwater ions. Environ Sci Technol 21:589–594

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431

    Article  CAS  Google Scholar 

  • Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2011) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by POSCO and National Research Foundation of Korea (NRF) (MEST) (No. 2011-0028723) and the “The GAIA Project”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Seok Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Kim, JH., Bokare, V. et al. Enhanced removal of chromate from aqueous solution by sequential adsorption–reduction on mesoporous iron–iron oxide nanocomposites. J Nanopart Res 14, 1010 (2012). https://doi.org/10.1007/s11051-012-1010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1010-6

Keywords

Navigation