Skip to main content
Log in

Chemical vapor functionalization: a continuous production process for functionalized ZnO nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The continuous functionalization of nanoparticles in the gas-phase directly after their generation, chemical vapor functionalization, is studied with ZnO and 1-hexanol as a model system using two reactors in series. In the first reactor ZnO nanoparticles are synthesized in the gas-phase from diethylzinc and oxygen at 1,073 K with grain sizes of 13 nm as determined by Rietveld refinement of X-ray diffractograms. The second reactor, connected at the exit of the first reactor and kept at lower temperatures (573, 673, and 773 K), is used as a functionalization chamber. At the connection point of the two reactors, the vapor of 1-hexanol is injected to react with the surface of ZnO nanoparticles in the gas phase. The process has been analyzed by quadrupole mass spectrometry to obtain information about optimal conditions for functionalization. Dynamic light scattering data show that the functionalized particles have substantially improved colloidal dispersibility with hydrodynamic diameters of 60 nm. Diffuse reflectance fourier transform infrared spectra and 1H nuclear magnetic resonance spectra are consistent with 1-hexanol adsorbed at the particle surface acting as a functionalizing agent. The agglomerate size is substantially reduced owing to chemical vapor functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ali M, Donakowski MD, Winterer M (2010) Chemical vapor functionalization of ZnO nanocrystals. Mat Res Soc Symp Proc 1260:3

    Article  Google Scholar 

  • Ali M, Friedenberger N, Spasova M, Winterer M (2009) A novel approach for chemical vapor synthesis of ZnO nanocrystals: optimization of yield, crystallinity. Chem Vap Dep 15:192

    Article  CAS  Google Scholar 

  • Ali M, Winterer M (2010) ZnO nanocrystals: surprisingly ‘alive’. Chem Mater 22:85

    Article  CAS  Google Scholar 

  • Deb B, Kumar V, Druffel TL, Sunkara MK (2009) Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor. Nanotechnology 20:465701

    Article  CAS  Google Scholar 

  • Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2:944

    Article  CAS  Google Scholar 

  • Fotou GP, Kodas TT (1997) Sequential gas-phase formation of Al2O3 and SiO2 layers on aerosol-made TiO2 particles. Adv Mater 9:420

    Article  CAS  Google Scholar 

  • Lee IK, Winterer M (2005) Aerosol mass spectrometer for the in situ analysis of chemical vapor synthesis processes in hot wall reactors. Rev Sci Instrum 76:095104

    Article  Google Scholar 

  • Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341

    Article  CAS  Google Scholar 

  • Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsletter of the CPD 1999, 21, 14. Program available at http://www.ing.unitn.it/~maud/

  • Mangolini L, Kortshagen U (2007) Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater 19:2513

    Article  CAS  Google Scholar 

  • Mulvaney P (1998) Zeta potential and colloid reaction kinetics. In: Fendler JH (ed) Nanoparticles and nanostructured films. Wiley-VCH, Weinheim

  • Noei H, Qiu H, Wang Y, Löffler E, Wöll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10:7092

    Article  CAS  Google Scholar 

  • Powell QH, Kodas TT, Anderson BM (1996) Coating of TiO2 particles by chemical vapor deposition of SiO2. Chem Vap Dep 2(5):179–181

    Google Scholar 

  • Powell QH, Fotou GP, Kodas TT, Anderson BM, Gao Y (1997) Gas-phase coating of TiO2 with SiO2 in a continuous flow hot-wall aerosol reactor. J Mater Res 12:552

    Article  CAS  Google Scholar 

  • Ravi S, Raghunathan TS (1988) Dehydrogenation of butan-2-ol on zinc oxide catalyst: a continuous stirred tank reactor study. Ind Eng Chem Res 27:2050

    Article  CAS  Google Scholar 

  • Sagmeister M, Brossmann U, List EJW, Ochs R, Szabó DV, Würschum R (2008) In-situ dispersion of ZrO2 nano-particles coated with pentacene. Phys Stat Sol (RRL) 2:203

    Article  CAS  Google Scholar 

  • Sakohara S, Ishida M, Anderson MA (1998) Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate. J Phys Chem B 102:10169

    Article  CAS  Google Scholar 

  • Schallehn M, Winterer M, Weirich TE, Keiderling U, Hahn H (2003) In-situ preparation of polymer coated alumina nanopowders by chemical vapor synthesis. Chem Vap Dep 9:40

    Article  CAS  Google Scholar 

  • Sigmund W, Bell NS, Bergström L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83:1557

    Article  CAS  Google Scholar 

  • Srdic VV, Winterer M, Hahn H (2001) Nanocrystalline zirconia surface-doped with alumina: chemical vapor synthesis, characterization, and properties. J Am Ceram Soc 84:2771

    Article  CAS  Google Scholar 

  • Suffner J, Schechner G, Sieger H, Hahn H (2007) In-situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Dep 13:459

    Article  CAS  Google Scholar 

  • Szabo DV, Vollath D (1999) Nanocomposites from coated nanoparticles. Adv Mater 11:1313

    Article  CAS  Google Scholar 

  • Teleki A, Bjelobrk N, Pratsinis SE (2010) Continuous surface functionalization of flame-made TiO(2) nanoparticles. Langmuir 26:5815

    Article  CAS  Google Scholar 

  • Vollath D, Szabo DV (1994) Nanocoated particles: a special type of ceramic powder. Nanostr Mater 4:927

    Article  CAS  Google Scholar 

  • Vollath D, Szabo DV, Hausselt (1997) Synthesis and properties of ceramic nanoparticles and nanocomposites. J Eur Ceram Soc 17:1317

    Article  CAS  Google Scholar 

  • Wang LQ, Exarhos GJ, Windisch CF Jr, Yao C, Pederson LR, Zhou XD (2007) Probing hydrogen in ZnO nanorods using solid-state 1H nuclear magnetic resonance. Appl Phys Lett 90:173115

    Article  Google Scholar 

  • Winterer M (2002) Nanocrystalline ceramics—synthesis and structure. Springer series in materials science, vol 53. Springer, Heidelberg

Download references

Acknowledgments

The financial support of the German Research Foundation (DFG) through the Research Training Group: Nanotronics (1240) is gratefully acknowledged. We thank Nina Friedenberger (Farle group) for TEM measurements (Solid State Physics, University of Duisburg-Essen) and Manfred Zähres (Physical Chemistry, University of Duisburg-Essen) for NMR measurements. We are grateful for chemical analysis performed in the Epple group (Inorganic Chemistry, University of Duisburg-Essen) and Fourier Transform Infrared Spectroscopy measured in the Lorke group (Solid State Physics, University of Duisburg-Essen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Winterer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Donakowski, M.D., Mayer, C. et al. Chemical vapor functionalization: a continuous production process for functionalized ZnO nanoparticles. J Nanopart Res 14, 689 (2012). https://doi.org/10.1007/s11051-011-0689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0689-0

Keywords

Navigation