Skip to main content
Log in

One-step growth of gold nanorods using a β-diketone reducing agent

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The synthesis and characterisation of gold nanorods have been carried out by reduction of the gold salt HAuCl4. This has been done using a single reducing agent, acetylacetone, rather than the two reducing agents, sodium borohydride and ascorbic acid, normally required by standard wet chemistry methods of gold nanorod formation. Using this novel method, the nanorods were synthesised at several different pH values which were found to greatly affect both the rate at which the nanorods form and their physical dimensions. The concentrations of acetylacetone and silver nitrate used relative to the gold salt were found to alter the aspect ratio of the nanorods formed. Rods with an average length of 42 nm and an aspect ratio of 4.6 can be easily and reproducibly formed at pH 10 using this method. Nanorods formed under optimum conditions were investigated using TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

References

  • Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416. doi:10.1002/adma.200390095

    Article  CAS  Google Scholar 

  • Chen HM, Liu RS (2006) Controlling length and monitoring growth of gold nanorods. J Chin Chem Soc (Taipei) 53:1343–1348

    CAS  Google Scholar 

  • Foss CA, Hornyak CL, Stocked JA, Martin CR (1992) Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J Phys Chem 96:1491–1499

    Google Scholar 

  • Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a

    Article  PubMed  CAS  Google Scholar 

  • Imura K, Nagahara T, Okamoto H (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109:13214–13220. doi:10.1021/jp051631o

    Article  PubMed  CAS  Google Scholar 

  • Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882. doi:10.1002/smll.200500014

    Article  PubMed  CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067. doi:10.1021/jp0107964

    Article  CAS  Google Scholar 

  • Kundu S, Pal A, Ghosh SK, Nath S, Panigrahi S, Praharaj S, Basu S, Pal T (2005) Shape-controlled synthesis of gold nanoparticles from gold(III)-chelates of β-diketones. J Nanopart Res 7:641–650. doi:10.1007/s11051-005-3475-z

    Article  CAS  Google Scholar 

  • Li CZ, Male KB, Hrapovic S, Luong JHT (2005) Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem Commun (Camb) 3924–3926. doi:10.1039/b504186d

  • Liao HW, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641. doi:10.1021/cm050935k

    Article  CAS  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi:10.1021/cm020732l

    Article  CAS  Google Scholar 

  • Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420. doi:10.1021/la049463z

    Article  PubMed  CAS  Google Scholar 

  • Sudeep PK, Joseph STS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517. doi:10.1021/ja051145e

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Niidome Y, Yamada S (2005) Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun (Camb) 2247–2249. doi:10.1039/b500337g

  • Wang HF, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng JX (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102:15752–15756. doi:10.1073/pnas.0504892102

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yu YY, Chang SS, Lee CL (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664. doi:10.1021/jp971656q

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Gobierno Vasco and the Diputación Foral de Gipuzkoa for financial support through the i-NANOGUNE Etortek project and the Spanish Ministry of Science and Innovation: Project HOPE CSD2007-0007 (Consolider-Ingenio 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mecerreyes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 (PDF 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tollan, C.M., Echeberria, J., Marcilla, R. et al. One-step growth of gold nanorods using a β-diketone reducing agent. J Nanopart Res 11, 1241–1245 (2009). https://doi.org/10.1007/s11051-008-9564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9564-z

Keywords

Navigation