Skip to main content
Log in

Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Functional nanocrystals are widely considered as novel building blocks for nanostructured materials and devices. Numerous synthesis approaches have been proposed in the solid, liquid and gas phase. Among the gas phase approaches, low pressure nonthermal plasmas offer some unique and beneficial features. Particles acquire a unipolar charge which reduces or eliminates agglomeration; particles can be electrostatically confined in a reactor based on their charge; strongly exothermic reactions at the particle surface heat particles to temperatures that significantly exceed the gas temperature and facilitate the formation of high quality crystals. This paper discusses two examples for the use of low pressure nonthermal plasmas. The first example is that of a constricted capacitive plasma for the formation of highly monodisperse, cubic-shaped silicon nanocrystals with an average size of 35 nm. The growth process of the particles is discussed. The silicon nanocubes have successfully been used as building blocks for nanoparticle-based transistors. The second example focuses on the synthesis of photoluminescent silicon crystals in the 3–6 nm size range. The synthesis approach described has enabled the synthesis of macroscopic quantities of quantum dots, with mass yields of several mg/hour. Quantum yields for photoluminescence as high as 67% have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alivisatos A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  • Baldwin R.K., Pettigrew K.A., Garno J.C., Power P.P., Liu G.-Y., Kauzlarich S.M. (2002) Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124(7):1150–1151

    Article  CAS  Google Scholar 

  • Banerjee S., Huang S., Yamanaka T., Oda S. (2002) Evidence of storing and erasing of electrons in a nanocrystalline-Si based memory device at 77 K. J. Vac. Sci. Technol. B 20(3):1135–1138

    Article  CAS  Google Scholar 

  • Bapat A., Anderson C., Perrey C.R., Carter C.B., Campbell S.A., Kortshagen U. (2004) Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Phys. Controlled Fusion 46(12):B97–B109

    Article  CAS  Google Scholar 

  • Barnard A., Zapol P. (2004) A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121(9):4276–4283

    Article  CAS  Google Scholar 

  • Batson P.E., Heath J.R. (1993) Electron energy loss spectroscopy of single silicon nanocrystals: the conduction band. Phys. Rev. Lett. 71(6):911–914

    Article  CAS  Google Scholar 

  • Borsella E., Falconieri M., Botti S., Martelli S., Bignoli F., Costa L., Grandi S., Sangaletti L., Allieri B., Depero L. (2001) Optical and morphological characterization of Si nanocrystals/silica composites prepared by sol–gel processing. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. B B79(1):55–62

    Google Scholar 

  • Bouchoule A., Boufendi L. (1993) Particulate formation and dusty plasma behaviour in argon-silane RF discharge. Plasma Sources Sci. Technol. 2:204

    Article  CAS  Google Scholar 

  • Boufendi L., Bouchoule A. (1994) Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci. Technol. 3:263

    Article  Google Scholar 

  • Brus L.E. (1991) Quantum crystallites and nonlinear optics. Appl. Phys. A 53:465–474

    Article  Google Scholar 

  • Brus L.E., Szajowski P.J., Wilson W.L., Harris T.D., Schuppler S., Citrin P.H. (1995) Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 117:2915–2922

    Article  CAS  Google Scholar 

  • Buriak J.M. (2002) Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102(5):1271–1308

    Article  CAS  Google Scholar 

  • Campbell, S.A., U. Kortshagen, A. Bapat, Y. Dong, S. Hilchie & Z. Shen, 2004. The Production and electrical characterization of free standing cubic single crystal silicon nanoparticles. J. Mater 56(10), 26–28

    Google Scholar 

  • Canham L. (2000) Gaining light from silicon. Nature 408:411–412

    Article  CAS  Google Scholar 

  • Canham L.T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57:1046

    Article  CAS  Google Scholar 

  • Carlile R.N., Geha S., O’Hanlon J.F., Stewart J.C. (1991) Electrostatic trapping of contamination particles in a process plasma environment. Appl. Phys. Lett. 59:1167

    Article  CAS  Google Scholar 

  • Collins R.T., Fauchet P.M., Tischler M.A. (1997) Porous silicon: from luminescence to LEDs. Phys.Today 50:24

    CAS  Google Scholar 

  • Colvin V.L., Schlamp M.C., Alivisatos A.P. (1994) Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488):354–357

    Article  CAS  Google Scholar 

  • Cullis A.G., Canham L.T. (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 335:335–338

    Article  Google Scholar 

  • Dabbousi B.O., Bawendi M.G., Onitsuka O., Rubner M.F. (1995) Electroluminescence from Cdse quantum-dot polymer composites. Appl. Phys. Lett. 66(11):1316–1318

    Article  CAS  Google Scholar 

  • Ding, Y., Y. Dong, A. Bapat, J. Deneen, C.B. Carter, U. Kortshagen & S.A. Campell, 2005. Single nanoparticle semiconductor devices. IEEE Trans. Electron Dev. (accepted for publication)

  • Ding Z., Quinn B.M., Haram S.K., Pell L.E., Korgel B.A., Bard A.J. (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296:1293–1297

    Article  CAS  Google Scholar 

  • Draeger E.W., Grossman J.C., Williamson A.J., Galli G. (2004) Optical properties of passivated silicon nanoclusters: The role of synthesis. J. Chem. Phys. 120(22):10807–10814

    Article  CAS  Google Scholar 

  • Eaglesham D.J., White A.E., Feldman L.C., Moriya N., Jacobson D.C. (1993) Equilibrium shape of Si. Phys. Rev. Lett. 70(11):1643–1646

    Article  CAS  Google Scholar 

  • Ehbrecht M., Huisken F. (1999) Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane. Phys. Rev. B: Condens. Matter Mater. Phys. 59(4):2975–2985

    CAS  Google Scholar 

  • Franzò G., Irrera A., Moreira E.C., Miritello M., Iacona F., Sanfilippo D., Di Stefano G., Fallica P.G., Priolo F. (2002) Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A: Mat. Sci. Proc. 74:1–5

    Article  Google Scholar 

  • Friedlander S.K. (2000) Smoke, Dust, and Haze – Fundamentals of Aerosol Dynamics. Oxford University Press, New York

    Google Scholar 

  • Fu Y., Willander M., Dutta A., Oda S. (2000) Carrier conduction in a Si-nanocrystal-based single-electron transistor-I. Effect of gate bias. Superlattices Microstruct. 28(3):177–187

    Article  CAS  Google Scholar 

  • Furukawa S., Miyasato T. (1988) Three-dimensional quantum well effects in ultrafine silicon particles. Jpn. J. Appl. Phys. 27(11):L2207

    Article  CAS  Google Scholar 

  • Gerberich W.W., Mook W.M., Perrey C.R., Carter C.B., Baskes M.I., Mukherjee R., Gidwani A., Heberlein J., McMurry P.H., Girshick S.L. (2003) Superhard silicon nanospheres. J. Mech. Phys. Solids. 51:979–992

    Article  CAS  Google Scholar 

  • Goldstein A.N., Echer C.M., Alivisatos A.P. (1992) Melting in semiconductor nanocrystals. Science 256:1425–1427

    Article  CAS  Google Scholar 

  • Goree J. (1994) Charging of particles in a plasma. Plasma Sources Sci. Technol. 3:400

    Article  CAS  Google Scholar 

  • Holmes J.D., Ziegler K.J., Doty C., Pell L.E., Johnston K.P., Korgel B.A. (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123:3743–3748

    Article  CAS  Google Scholar 

  • Holtz R.L., Provenzano V., Imam M.A. (1996) Overview of nanophase metals and alloys for gas sensors, getters, and hydrogen storage. Nanostruct. Mater. 7:259–264

    Article  CAS  Google Scholar 

  • Huisken F., Amans D., Ledoux G., Hofmeister H., Cichos F., Martin J. (2003) Nanostructuration with visible-light-emitting silicon nanocrystals. New J. Phys. 5:1–10, Paper No. 10

    Article  CAS  Google Scholar 

  • Kennedy M.K., Kruis F.E., Fissan H., Mehta B.R. (2003) Fully automated, gas sensing, and electronic parameter measurement setup for miniaturized nanoparticle gas sensors. Rev. Sci. Instr. 74(11):4908–4915

    Article  CAS  Google Scholar 

  • Kennedy M.K., Kruis F.E., Fissan H., Mehta B.R., Stappert S., Dumpich G. (2003) Tailored nanoparticle films from monosized tin oxide nanocrystals: particle synthesis, film formation, and size-dependent gas-sensing properties. J. Appl. Phys. 93(1):551–560

    Article  CAS  Google Scholar 

  • Kim T.W., Choo D.C., Shim J.H., Kang S.O. (2002) Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam. Appl. Phys. Lett. 80(12):2168–2170

    Article  CAS  Google Scholar 

  • Klein D.L., Roth R., Lim A.K.L., Alivisatos A.P., McEuen P.L. (1997) A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389:699–701

    Article  CAS  Google Scholar 

  • Kortshagen U., Bhandarkar U. (1999) Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E 60(1):887

    Article  CAS  Google Scholar 

  • Ledoux G., Gong J., Huisken F., Guillois O., Reynaud C. (2002) Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl. Phys. Lett. 80(25):4834–4836

    Article  CAS  Google Scholar 

  • Ledoux G., Guillois O., Porterat D., Reynaud C., Huisken F., Kohn B., Paillard V. (2000) Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62(23):15942–15951

    Article  CAS  Google Scholar 

  • Li X., He Y., Talukdar S.S., Swihart M.T. (2003) Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19(20):8490–8496

    Article  CAS  Google Scholar 

  • Littau K.A., Szajowski P.J., Muller A.J., Kortan A.R., Brus L.E. (1993) A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97:1224–1230

    Article  CAS  Google Scholar 

  • Mangolini L., Thimsen E., Kortshagen U. (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4):655–659

    Article  CAS  Google Scholar 

  • Matsoukas T. (1997) The coagulation rate of charged aerosols in ionized gases. J. Colloid. Interface Sci. 187:474

    Article  CAS  Google Scholar 

  • Matsoukas T., Russel M. (1995) Particle charging in low-pressure plasmas. J. Appl. Phys. 77:4285

    Article  CAS  Google Scholar 

  • Nayfeh M., Akcakir O., Therrien J., Yamani Z., Barry N., Yu W., Gratton E. (1999) Highly nonlinear photoluminescence threshold in porous silicon. Appl. Phys. Lett. 75(26):4112–4114

    Article  CAS  Google Scholar 

  • Nayfeh M.H., Barry N., Therrien J., Akcakir O., Gratton E., Belomoin G. (2001) Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl. Phys. Lett. 78(8):1131–1133

    Article  CAS  Google Scholar 

  • Nishiguchi K., Oda S. (2000) Electron transport in a single silicon quantum structure using a vertical silicon probe. J. Appl. Phys. 88(7):4186–4190

    Article  CAS  Google Scholar 

  • Onischuk A.A., Levykin A.I., Strunin V.P., Sabelfeld K.K., Panfilov V.N. (2000) Aggregate formation under homogeneous silane thermal decomposition. J. Aerosol Sci. 31(11):1263–1281

    Article  CAS  Google Scholar 

  • Onischuk A.A., Levykin A.I., Strunin V.P., Ushakova M.A., Samoilova R.I., Sabelfeld K.K., Panfilov V.N. (2000) Aerosol formation under heterogeneous/homogeneous thermal decomposition of silane: experiment and numerical modeling. J. Aerosol Sci. 31(8):879–906

    Article  CAS  Google Scholar 

  • O’Regan B., Grätzel M. (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737

    Article  CAS  Google Scholar 

  • Ostraat M.L., De Blauwe J.W., Green M.L., Bell L.D., Atwater H.A., Flagan R.C. (2001a) Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices. Appl. Phys. Lett. 148(5):G265–G270

    Article  CAS  Google Scholar 

  • Ostraat M.L., De Blauwe J.W., Green M.L., Bell L.D., Brongersma M.L., Casperson J., Flagan R.C., Atwater H.A. (2001b) Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3):433–435

    Article  CAS  Google Scholar 

  • Park N.-M., Kim T.-S., Park S.-J. (2001) Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17):2575–2577

    Article  CAS  Google Scholar 

  • Pettigrew K.A., Liu Q., Power P.P., Kauzlarich S.M. (2003) Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater. 15(21):4005–4011

    Article  CAS  Google Scholar 

  • Puzder A., Williamson A.J., Grossman J.C., Galli G. (2002) Surface chemistry of silicon nanoclusters. Phys. Rev. Lett. 88(9):097401–097404

    Article  Google Scholar 

  • Puzder A., Williamson A.J., Grossman J.C., Galli G. (2003) Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125(9):2786–2791

    Article  CAS  Google Scholar 

  • Reboredo F.A., Franceschetti A., Zunger A. (1999) Excitonic transitions and exchange splitting in Si quantum dots. Appl. Phys. Lett. 75(19):2972–2974

    Article  CAS  Google Scholar 

  • Sankaran R.M., Holunga D., Flagan R.C., Giapis K.P. (2005) Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5(3):531–535

    Article  Google Scholar 

  • Schweigert V.A., Schweigert I.V. (1996) Coagulation in low-temperature plasmas. J. Phys. D: Appl. Phys. 29:655

    Article  CAS  Google Scholar 

  • Selwyn G.S., Haller K.L., Patterson E.F. (1993) Trapping and behavior of particulates in a radio frequency magnetron etching tool. J. Vac. Sci. Technol. A 11:1132

    Article  CAS  Google Scholar 

  • Selwyn G.S., Heidenreich J.E., Haller H.L. (1990) Particle trapping phenomena in radio frequency plasmas. Appl. Phys. Lett. 57:1876

    Article  CAS  Google Scholar 

  • Shen Z., Kim T., Kortshagen U., McMurry P., Campbell S. (2003) Formation of highly uniform silicon nanoparticles in high density silane plasmas. J. Appl. Phys. 94(4):2277–2283

    Article  CAS  Google Scholar 

  • Shi F.G. (1994) Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9(5):1307–1312

    CAS  Google Scholar 

  • St. John J., Coffer J.L., Chen Y., Pinizzotto R.F. (1999) Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals. J. Am. Chem. Soc. 121:1888–1892

    Article  CAS  Google Scholar 

  • Stekolnikov A.A., Furthmüller J., Bechstedt F. (2002) Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction. Phys. Rev. B 65 (115318)

    Article  Google Scholar 

  • Stoffels E., Stoffels W.W., Kroesen G.M.W., Hoog F.J. d. (1996) Dust formation and charging in an Ar/SiH4 radio-frequency discharge. J. Vac. Sci. Technol. A 14:556

    Article  CAS  Google Scholar 

  • Takahashi N., Ishikuro H., Hiramoto T. (2000) Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Appl. Phys. Lett. 76(2):209–211

    Article  CAS  Google Scholar 

  • Tiwari S., Rana F., Chan K., Shi L., Hanafi H. (1996a) Single charge and confinement effects in nano-crystal memories. Appl. Phys. Lett. 69:1232

    Article  CAS  Google Scholar 

  • Tiwari S., Rana F., Hanafi H., Hartstein A., Crabbé E.F., Chan K. (1996b) A silicon nanocrystals based memory. Appl. Phys. Lett. 68:1377

    Article  CAS  Google Scholar 

  • Vasiliev I., Chelikowsky J.R., Martin R.M. (2002) Surface oxidation effects on the optical properties of silicon nanocrystals. Phys. Rev. B (Condensed Matter and Materials Physics) 65(12):121302

    Google Scholar 

  • Volkening F.A., Naidoo M.N., Candela G.A., Holtz R.L., Provenzano V. (1995) Characterization of nanocrystalline palladium for solid state gas sensor applications. Nanostruct. Mater. 5:373–382

    Article  CAS  Google Scholar 

  • Watanabe Y., Shiratani M. (1993) Growth kinetics and behavior of dust particles in silane plasmas. Jpn. J. Appl. Phys. 32:3074

    Article  CAS  Google Scholar 

  • Wilcoxon J.P., Samara G.A. (1999) Tailorable, visible light emission from silicon nanocrystals. Appl. Phys. Lett. 74(21):3164–3166

    Article  CAS  Google Scholar 

  • Wilcoxon J.P., Samara G.A., Provencio P.N. (1999) Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 60(4):2704–2714

    Article  CAS  Google Scholar 

  • Wolkin M.V., Jorne J., Fauchet P.M., Allan G., Delerue C. (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82(1):197

    Article  CAS  Google Scholar 

  • Zhang Z., Zhao M., Jiang Q. (2001) Melting temperature of semiconductor nanocrystals in the mesoscopic size range. Semicond. Sci. Technol. 16:L33–L35

    Article  CAS  Google Scholar 

  • Zhou Z., Brus L., Friesner R. (2003a) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett. 3(2):163–167

    Article  CAS  Google Scholar 

  • Zhou Z., Friesner R.A., Brus L. (2003b) Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping. J. Am. Chem. Soc. 125:15599–15607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under MRSEC award number DMR-0212302, under NIRT-grant DMI-0304211, grant CTS-0500332 and under IGERT award number DGE-0114372, and by InnovaLight, Inc. We acknowledge Dr. Christopher R. Perrey and Professor C. Barry Carter for support with high-resolution TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Kortshagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortshagen, U., Mangolini, L. & Bapat, A. Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications. J Nanopart Res 9, 39–52 (2007). https://doi.org/10.1007/s11051-006-9174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9174-6

Keywords

Navigation