Skip to main content
Log in

Effect of Thermal Treatment on the Structure of Multi-walled Carbon Nanotubes

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effects of vacuum annealing and oxidation in air on the structure of multi-walled carbon nanotubes (MWCNTs) produced by a large-scale catalytic chemical vapor deposition (CCVD) process are studied using Raman spectroscopy and transmission electron microscopy (TEM). A detailed Raman spectroscopic study of as-produced nanotubes has also been conducted. While oxidation in air up to 400°C removes disordered carbon, defects in tube walls are produced at higher temperatures. TEM reveals that MWCNTs annealed at 1,800°C and above become more ordered than as-received tubes, while the tubes annealed at 2,000°C exhibit polygonalization, mass transfer and over growth. The change in structure is observable by the separation of the Raman G and D′ peaks, a lower R-value (I D/I G ratio), and an increase in the intensity of the second order peaks. Using wavelengths from the deep ultraviolet (UV) range (5.08 eV) extending into the visible near infrared (IR) (1.59 eV), the Raman spectra of MWCNTs reveal a dependence of the D-band position proportional to the excitation energy of the incident laser energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ago H., Nakamura K., Imamura S. and Tsuji M. (2004). Growth of double-walled carbon nanotubes with diameter controlled iron oxide nanoparticles supported on MgO. Chem. Phys. Lett. 391: 308–313

    Article  CAS  Google Scholar 

  • Bacsa W.S., Ugarte D., Chatelain A. and de Heer W.A. (1994). High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Phys. Rev. B 50(20): 473–476

    Article  Google Scholar 

  • Banhart F. (1999). Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62(8): 1181–1221

    Article  CAS  Google Scholar 

  • Brown S.D.M., Jorio A., Dresselhaus M.S. and Dresselhaus G. (2001). Observations of the D-band feature in the Raman spectra of carbon nanotubes. Phys. Rev. B 64(7): 073403/1–4

    Article  CAS  Google Scholar 

  • Chiashi S., Murakami Y., Miyauchi Y., and Maruyama S. (2004). Cold wall CVD generation of single-walled carbon nanotubes and in situ Raman scattering measurements of the growth stage. Chem. Phys. Lett. 386: 89–94

    Article  CAS  Google Scholar 

  • Corrias M., Caussat B., Ayral A., Durand J., Kihn Y., Kalck P. and Serp P. (2003). Carbon nanotubes produced by fluidized bed catalytic CVD: First approach of the process. Chem. Eng. Sci. 58(19): 4475–4482

    Article  CAS  Google Scholar 

  • Couteau E., Hernadi K., Seo J.W., Thien-Nga L., Miko C., Gaal R. and Forro L. (2003). CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378: 9–17

    Article  CAS  Google Scholar 

  • Dresselhaus M.S., 2001. Carbons: Bonding. In: Jurgen Buschow K.H., Cahn R.W., Flemings M.C., Ilschner B., Kramer E.J., and Mahajan S. eds. Encyclopedia of Materials: Science and Technology. Elsevier, pp. 995–999

  • Dresselhaus M.S., Pimenta M.A., Eklund P.C. and Dresselhaus M.S. (2000). Raman scattering in fullerenes and related carbon-based materials. In: Weber W.H. and Merlin R. (eds) Raman Scattering in Materials Science. Springer-Verlag, New York, pp. 314–364

    Google Scholar 

  • Eklund P.C., Holden J.M. and Jishi R.A. (1995). Vibrational modes of carbon nanotubes: Spectroscopy and theory. Carbon 33(7):959–972

    Article  CAS  Google Scholar 

  • Endo M., Lee B.J., Kim Y.A., Muramatsu H., Yanagisawa T., Hayashi T., Terrones M. and Dresselhaus M.S. (2003). Transitional behaviour in the transformation from active end planes to stable loops caused by annealing. New J. Phys. 5: 121.1–121.9

    Article  Google Scholar 

  • Gogotsi Y., Libera J.A., Kalashnikov N. and Yoshimura M. (2000). Graphite polyhedral crystals. Science 290: 317–320

    Article  CAS  Google Scholar 

  • Hiura H., Ebbesen T.W. and Tanigaki K. (1993). Raman studies of carbon nanotubes. Chem. Phys. Lett. 202(6): 509–512

    Article  CAS  Google Scholar 

  • Hulman M., Kuzmany H., Dubay O., Kresse G., Li L., Tang Z.K., Knoll P. and Kaindl R. (2004). Raman spectroscopy of single wall carbon nanotubes grown in zeolite crystals. Carbon 42: 1071–1075

    Article  CAS  Google Scholar 

  • Iijima S. (1991). Helical microtubules of graphitic carbon. Nature 354: 56–58

    Article  CAS  Google Scholar 

  • Jorio A., Saito R., Dresselhaus G. and Dresselhaus M.S. (2004). Determination of nanotubes properties by Raman spectroscopy. Philos. Transac. Royal Soc. 362(1824): 2311–2336

    Article  CAS  Google Scholar 

  • Kastner J., Pichler T., Kuzmany H., Curran S., Blau W., Weldon D.N., Delamesiere M., Draper S. and Zandbergen H. (1994). Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221(1–2):53–58

    Article  CAS  Google Scholar 

  • Kim Y.A., Hayashi T., Osawa K., Dresselhaus M.S. and Endo M. (2003). Annealing effect on disordered multi-walled carbon nanotubes. Chem. Phys. Lett. 380: 319–324

    Article  CAS  Google Scholar 

  • Kobayashi Y., Nakashima H., Takagi D. and Homma Y. (2004). “CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Solid Films 464–465: 286–289

    Article  Google Scholar 

  • Kosaka M., Ebbesen T.W., Hiura H. and Tanigaki K. (1995). Annealing effect on carbon nanotubes. An ESR study. Chem. Phys. Lett. 233: 47–51

    Article  CAS  Google Scholar 

  • Lee C.J., Lyu S.C., Cho Y.R. and Lee J.H. (2001). Diameter-controlled growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 341: 245–249

    Article  CAS  Google Scholar 

  • Lee C.J., Park J. and Yu J.A. (2002). Catalyst effects on carbon nanotubes synthesized by thermal chemical vapor deposition. Chem. Phys. Lett. 360: 250–255

    Article  CAS  Google Scholar 

  • Lefrant S. (2002). Raman and SERS studies of carbon nanotube systems. Curr. Appl. Phys. 2: 479–482

    Article  Google Scholar 

  • Lefrant S., Buisson J.P., Schreiber J., Chauvet O., Baibarac M. and Baltog I. (2003). Study of interactions in carbon systems using Raman and SERS spectroscopy. Syn. Metals 139: 783–785

    Article  CAS  Google Scholar 

  • Naguib N., Ye H., Gogotsi Y., Yazicioglu A.G., Megaridis C.M. and Yoshimura M. (2004). Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 4(11): 2237–2243

    Article  CAS  Google Scholar 

  • Osswald S., Flahaut E. and Gogotsi Y. (2006). In situ Raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes. Chem. Mater. 18(6): 1525–1533

    Article  CAS  Google Scholar 

  • Osswald S., Flahaut E., Ye H., and Gogotsi Y. (2005). Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem. Phys. Lett. 402: 422–427

    Article  CAS  Google Scholar 

  • Pimenta M.A., Jorio A., Brown S.D.M., Souza Filho A.G., Dresselhaus G., Hafner J.H., Lieber C.M., Saito R., and Dresselhaus M.S. (2001). Diameter dependence of the Raman D-band in an isolated single-wall carbon nanotube. Phys. Rev. B 64(4): 041401/1–4

    Article  CAS  Google Scholar 

  • Rakov E.G., 2006. Chemistry of carbon nanotubes. In: Gogotsi Y. ed., Nanomaterials Handbook. CRC press, pp. 105–176

  • Rao A.M., Jorio A., Pimenta M.A., Dantas M.S.S., Saito R., Dresselhaus G. and Dresselhaus M.S. (2000). Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 84(8): 1820–1823

    Article  CAS  Google Scholar 

  • Rotkin S., and Gogotsi Y. (2002). Analysis of non-planar graphitic structures: From arched edge planes of graphite crystals to nanotubes. Mat. Res. Innovat. 5: 191–200

    Article  CAS  Google Scholar 

  • Speck J.S., Endo M. and Dresselhaus M.S. (1989). Structure and intercalation of thin benzene derived carbon fibers. J. Crystal Growth 94(4): 834–848

    Article  CAS  Google Scholar 

  • Thomsen C. & S. Reich, 2000. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85(24), 5215–5217

    Google Scholar 

  • Thomsen C., Reich S. and Maultzsch J. (2004). Resonant Raman spectroscopy of nanotubes. Philos. Transac. Royal Soc. London A 362: 2337–2359

    Article  CAS  Google Scholar 

  • Wang Y.F., Alsmeyer D.C., and McCreery R.L. (1990). Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 2: 557–563

    Article  CAS  Google Scholar 

  • Wang Y.F., Cao X.W., Hu S.F., Liu Y.Y., and Lan G.X. (2001). Graphical method for assigning Raman peaks of radial breathing modes of single-walled carbon nanotubes. Chem. Phys. Lett. 336(1–2):47–52

    CAS  Google Scholar 

  • Wiltshire J.G., Khlobystov A.N., Li L.J. and Lyapin S.G. (2004). Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chem. Phys. Lett. 386(4–6): 239–243

    Article  CAS  Google Scholar 

  • Ye H., Naguib N. and Gogotsi Y. (2004). TEM study of water in carbon nanotubes. JEOL News 39(2): 1–7

    Google Scholar 

  • Yushin G.N., S. Osswald, V.I. Padalko, G.P. Bogatyreva & Y. Gogotsi, 2005. Effect of sintering on structure of nanodiamond. Diam. Relat. Mater. 14(10), 1721–1729

    Google Scholar 

  • Zhang H., Lin G., Zhou Z., Dong X. and Chen T. (2002). Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system. Carbon 40: 2429–2436

    Article  CAS  Google Scholar 

  • Zhou W., Ooi Y.H., Russo R., Papanek P., Luzzi D.E., Fischer J.E., Bronikowski M.J., Willis P.A., and Smalley R.E. (2001). Structural characterization and diameter-dependent oxidative stability of single wall carbon nanotubes synthesized by the catalytic decomposition of CO. Chem. Phys. Lett. 350: 6–14

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Mickael Havel for helpful discussions and Arkema, France, for supplying nanotubes. The vacuum furnace for annealing experiments was donated by Solar Atmospheres. The Renishaw 1000/2000 Raman spectrometer was purchased with an NSF Grant (DMR-0116645) and is operated by the centralized Materials Characterization Facility of the A.J. Drexel Nanotechnology Institute. The authors are also grateful to LRSM at the University of Pennsylvania for using their TEM facilities. K.␣Behler was supported by an NSF-IGERT Fellowship (Grant DGE-0221664) and the Arkema PhD Fellowship. S. Osswald is supported by Arkema PhD Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gogotsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behler, K., Osswald, S., Ye, H. et al. Effect of Thermal Treatment on the Structure of Multi-walled Carbon Nanotubes. J Nanopart Res 8, 615–625 (2006). https://doi.org/10.1007/s11051-006-9113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9113-6

Keywords

Navigation