Skip to main content
Log in

A Rapid Method for Growth of Metal Nanoparticles on Nanowire Substrates

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The production of nickel and platinum nanoparticles on silica nanowire substrates using plasma-enhanced chemical vapor deposition has been investigated. Determination of particle size and particle size distribution was done using transmission electron microscopy (TEM). Ni nanoparticle diameters were found to be between 2 and 6 nm, with particle size increasing as the substrate temperature increased from 573 to 873 K. The size of Ni nanoparticles was found to be dependent on the chamber pressure during growth. The results indicate a competition between pressure-related diffusion within the vapor and dissociation of the precursor. Pt nanoparticle diameters were consistently found to be 2.5–3.0 nm at all deposition conditions. Insufficient thermal energy within the studied range results in a minimal contribution from surface diffusion, the primary mechanism for nanoparticle growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn T.-M., Wynblatt P. and Tien J.K. (1981). Coarsening kinetics of platinum particles on oxide substrates. Acta Metall. 29: 921–929

    Article  CAS  Google Scholar 

  • Ayyappan S., Subbanna G.N., Gopalan R.S. and Rao C.N.R. (1996). Nanoparticles of nickel and silver produced by the polyol reduction of the metal salts intercalated in montmorillonite. Solid State Ionics 84: 271–281

    Article  CAS  Google Scholar 

  • Bell A.T. (2003). The impact of nanoscience on heterogeneous catalysis. Science 299: 1688–1691

    Article  CAS  Google Scholar 

  • Boudjahem A.-G., Monteverdi S., Mercy M., Ghanbaja D. and Bettahar M.M. (2002). Nickel nanoparticles supported on silica of low surface area: Hydrogen chemisorption and TPD and catalytic properties. Catal. Lett. 84: 115–122

    Article  CAS  Google Scholar 

  • Che G., Lakshmi B.B., Martin C.R. and Fisher E.R. (1999). Metal-nanocluster-filled carbon nanotubes: Catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15: 750–758

    Article  CAS  Google Scholar 

  • Chen D.-H. and Hsieh C.-H. (2002). Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J. Mater. Chem. 12: 2412–2415

    Article  CAS  Google Scholar 

  • Duan Y. and Li J. (2004). Structure study of nickel nanoparticles. Mater. Chem. Phys. 87: 452–454

    Article  CAS  Google Scholar 

  • Fonseca F.C., Goya G.F., Jardim R.F., Muccillo R., Carreño N.L.V., Longo E. and Leite E.R. (2002). Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66: 1044061–1044065

    Google Scholar 

  • Fukuoka A., Araki H., Kimura J., Sakamoto Y., Higuchi T., Sugimoto N., Inagaki S. and Ichikawa M. (2004). Template synthesis of nanoparticle arrays of gold, platinum and palladium in mesoporous silica films and powders. J. Mater. Chem. 14: 752–756

    Article  CAS  Google Scholar 

  • He Z., Chen J., Liu D., Tang H., Deng W. and Kuang Y. (2004). Deposition and electrocatalytic properties of platinum nanoparticles on carbon nanotubes for methanol electrooxidation. Mater. Chem. Phys. 85: 396–401

    Article  CAS  Google Scholar 

  • Higai S. and Ohno T. (2000). Initial process of a Ni adatom on the Si(001) surface: A first-principles study. Appl. Surf. Sci. 166: 149–153

    Article  CAS  Google Scholar 

  • Hitzke A., Hugenschmidt M.B. and Behm R.J. (1997). Low temperature Ni atom adsorption on the Au(110)-(1×2) surface. Surf. Sci. 389: 8–18

    Article  CAS  Google Scholar 

  • Ikuno T., Katayama M., Kishida M., Kamada K., Murata Y., Yasuda T., Honda S., Lee J.-G., Mori H. and Oura K. (2004). Metal-coated carbon nanotube tip for scanning tunneling microscope. Jpn. J. Appl. Phys. 43: L644–L646

    Article  CAS  Google Scholar 

  • Jiao J., Seraphin S., Wang X. and Withers J.C. (1996). Preparation and properties of ferromagnetic carbon-coated Fe, Co and Ni nanoparticles. J. Appl. Phys. 80: 103–108

    Article  CAS  Google Scholar 

  • Kellogg G.L. (1993). Diffusion behavior of Pt adatoms and clusters on the Rh(100) surface. Appl. Surf. Sci. 67: 134–141

    Article  CAS  Google Scholar 

  • Kolaczkiewicz J. and Bauer E. (1991). Surface diffusion of Rh, Pd, Ir and Pt on the W(110) plane. Surf. Sci. 256: 87–93

    Article  CAS  Google Scholar 

  • Li Q., Fan S., Han W., Sun C. and Liang W. (1997). Coating of carbon nanotube with nickel by electroless plating method. Jpn. J. Appl. Phys. Part 2 36: L501–L503

    Article  CAS  Google Scholar 

  • Liu Z., Gan L.M., Hong L., Chen W. and Lee J.Y. (2005). Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells. J. Power Sources 139: 73–78

    Article  CAS  Google Scholar 

  • Matsumoto T., Komatsu T., Nakano H., Arai K., Nagashima Y., Yoo E., Yamazaki T., Kijima M., Shimizu H., Takasawa Y. and Nakamura J. (2004). Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catal. Today 90: 277–281

    Article  CAS  Google Scholar 

  • Panigrahi S., Kundu S., Ghosh S.K., Nath S. and Pal T. (2004). General method of synthesis for metal nanoparticles. J. Nanoparticle Res. 6: 411–414

    Article  CAS  Google Scholar 

  • Planeix J.M., Coustel N., Coq B., Brotons V., Kumbhar P.S., Dutartre R., Geneste P., Bernier P. and Ajayan P.M. (1994). Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116: 7935–7936

    Article  CAS  Google Scholar 

  • Pradhan A.K. (2003). Growth and magnetism of Ni nanoparticles in Ni/Al2O3/Si or Si3N4 multilayers. Appl. Surf. Sci. 220: 26–29

    Article  CAS  Google Scholar 

  • Qiu S., Zhou Z., Dong J. and Chen G. (2001). Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils. J. Tribology 123: 441–443

    Article  CAS  Google Scholar 

  • Rojas T.C., Sayagués M.J., Caballero A., Koltypin Y., Gedanken A., Ponsonnet L., Vacher B., Martinc J.M. and Fernández A. (2000). TEM, EELS and EFTEM characterization of nickel nanoparticles encapsulated in carbon. J. Mater. Chem. 10: 715–721

    Article  CAS  Google Scholar 

  • Saravanan P., Jose T.A., Thomas P.J. and Kulkarni G.U. (2001). Submicron particles of Co, Ni and Co-Ni alloys. Bull. Mater. Sci. 24: 515–521

    Article  CAS  Google Scholar 

  • Satishkumar B.C., Vogl E.M., Govindaraj A. and Rao C.N.R. (1996). The decoration of carbon nanotubes by metal nanoparticles. J. Phys. D: Appl. Phys. 29: 3173–3176

    Article  CAS  Google Scholar 

  • Suzuki H., Sato T., Kamitsuji K., Kaneko S., Kawasaki H. and Kaito C. (2004). Novel method for preparing carbon nanoparticles carrying Pt clusters. J. Cryst. Growth 268: 238–241

    Article  CAS  Google Scholar 

  • Tang H., Chen J., Nie L., Liu D., Deng W., Kuang Y. and Yao S. (2004). High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs). J. Colloid Interface Sci. 269: 26–31

    Article  CAS  Google Scholar 

  • Wu S.H. and Chen D.-H. (2003). Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259: 282–286

    Article  CAS  Google Scholar 

  • Xu Q., Zhang L. and Zhu J. (2003). Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method. J. Phys. Chem. B 107: 8294–8296

    Article  CAS  Google Scholar 

  • Ye X.-R., Lin Y., Wang C., Englehard M.H., Wang Y. and Wai C.M. (2004). Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem. 14: 908–913

    Article  CAS  Google Scholar 

  • Ye X.-R., Lin Y., Wang C. and Wai C.M. (2003). Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Adv. Mater. 15: 316–319

    Article  CAS  Google Scholar 

  • Zhang H.-F., Wang C.-M., Buck E.C. and Wang L.-S. (2003). Synthesis, characterization, and manipulation of helical SiO2 nanosprings. Nano Lett. 3: 577–580

    Article  CAS  Google Scholar 

  • Zhang Y., Zhang Q., Li Y., Wang N. and Zhu J. (2000). Coating of carbon nanotubes with tungsten by physical vapor deposition. Solid State Commun. 115: 51–55

    Article  CAS  Google Scholar 

  • Zhang P., Zuo F., Khabari A., Griffiths P. and Hosseini-Tehrani A. (2001). Irreversible magnetization of nickel nanoparticles. J. Magn. Magn. Mater. 225: 337–345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Norton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaLonde, A.D., Norton, M.G., Zhang, D. et al. A Rapid Method for Growth of Metal Nanoparticles on Nanowire Substrates. J Nanopart Res 8, 99–104 (2006). https://doi.org/10.1007/s11051-005-8385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-8385-6

Keywords

Navigation