Skip to main content
Log in

Numerical construction of balanced state manifold for single-support legged mechanism in sagittal plane

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Legged mechanisms can walk and run but sometimes encounter a risk of falling. In this article, a general numerical framework of balance criteria for a single-support legged mechanism is proposed and demonstrated. Explicit forms of necessary and sufficient conditions for balancing are identified and the balanced state manifold is constructed accordingly in the extended phase space of joint angle, joint velocity, and actuation limit. Within the iteration loops for partitioned joint angle and actuation limit, a nonlinear constrained optimization problem is formulated where the dynamic models of the legged mechanism are incorporated. The necessary conditions for balancing, such as the Zero-Moment Point, positive normal reaction, friction, and the ability to end up at a final static equilibrium, are implemented along with the system parameters for generality. The sequential quadratic programming method numerically solves for the velocity extrema within the complete feasible domain to construct the balanced state manifold as a viability kernel, which is a reachable superset of all possible controller-based domains. The balanced state manifold, along with its demonstration using the proposed optimal balancing motion for minimum energy and biped walking motions in sagittal plane, shows valid features that are physically consistent. The framework can be extended to systems in three-dimension with higher complexity, both in single and double support phases, for the development and stability analysis of walking robots and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alba, M., Prada, J.C.G., Meneses, J., Rubio, H.: Center of percussion and gait design of biped robots. Mech. Mach. Theory 45(11), 1681–1693 (2010)

    Article  MATH  Google Scholar 

  2. Albert, A., Gerth, W.: Analytic path planning algorithms for bipedal robots without a trunk. J. Intell. Robot. Syst. 36(2), 109–127 (2003)

    Article  Google Scholar 

  3. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2), 153–161 (2001)

    Article  Google Scholar 

  4. Azevedo, C., Andreff, N., Arias, S.: Bipedal walking: from gait design to experimental analysis. Mechatronics 14(6), 639–665 (2004)

    Article  Google Scholar 

  5. Bauby, C.E., Kuo, A.D.: Active control of lateral balance in human walking. J. Biomech. 33(11), 1433–1440 (2000)

    Article  Google Scholar 

  6. Bourke, A.K., van de Ven, P.W.J., Chaya, A.E., OLaighin, G.M., Nelson, J.: Testing of a long-term fall detection system incorporated into a custom vest for the elderly. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 Aug. 2008, pp. 2844–2847 (2008)

    Google Scholar 

  7. Chevallereau, C., Sardain, P.: Design and actuation optimization of a 4 axes biped robot for walking and running. In: Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, USA. 24–28 Apr. 2000, vol. 4, pp. 3365–3370 (2000)

    Google Scholar 

  8. Choi, D., Atkeson, C.G., Cho, S.J., Kim, J.Y.: Phase plane control of a humanoid. In: 8th IEEE-RAS International Conference on Humanoid Robots, Daejeon, South Korea, 1–3 Dec. 2008, pp. 145–150 (2008)

    Google Scholar 

  9. Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robot. Auton. Syst. 57(8), 839–845 (2009)

    Article  Google Scholar 

  10. Djoudi, D., Chevallereau, C., Aoustin, Y.: Optimal reference motions for walking of a biped robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 Apr. 2005, pp. 2002–2007 (2005)

    Google Scholar 

  11. Donelan, J.M., Kram, R., Kuo, A.D.: Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J. Exp. Biol., 205, 3717–3727 (2002)

    Google Scholar 

  12. Ferreira, J.P., Crisóstomo, M., Coimbra, A.P.: Human-like ZMP trajectory reference in sagittal plane for a biped robot. In: The 14th International Conference on Advanced Robotics, Munich, Germany, 22–26 Jun. 2009, pp. 1588–1593 (2009)

    Google Scholar 

  13. Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka, S., Hirukawa, H.: Towards an optimal falling motion for a humanoid robot. In: 6th IEEE-RAS International Conference on Humanoid Robots, Genoa, Italy, 4–6 Dec. 2006, pp. 524–529 (2006)

    Google Scholar 

  14. Fukuda, T., Komata, Y., Arakawa, T.: Stabilization control of biped locomotion robot based learning with GAs having self-adaptive mutation and recurrent neural networks. In: IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 Apr. 1997, vol. 1, pp. 217–222 (1997)

    Chapter  Google Scholar 

  15. Ghiasi, A.R., Alizadeh, G., Mirzaei, M.: Simultaneous design of optimal gait pattern and controller for a bipedal robot. Multibody Syst. Dyn. 23(4), 401–429 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)

    Article  MathSciNet  Google Scholar 

  17. Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)

    Article  Google Scholar 

  18. Goswami, A., Kallem, V.: Rate of change of angular momentum and balance maintenance of biped robots. In: IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 Apr.–1 May 2004, vol. 4, pp. 3785–3790 (2004)

    Google Scholar 

  19. Granata, K.P., Lockhart, T.E.: Dynamic stability differences in fall-prone and healthy adults. J. Electromyogr. Kinesiol. 18(2), 172–178 (2008)

    Article  Google Scholar 

  20. Ha, T., Choi, C.-H.: An effective trajectory generation method for bipedal walking. Robot. Auton. Syst. 55(10), 795–810 (2007)

    Article  Google Scholar 

  21. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 22(3), 568–575 (2006)

    Article  Google Scholar 

  22. Hase, K., Yamazaki, N.: Development of three-dimensional whole-body musculoskeletal model for various motion analyses. JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf. 40(1), 25–32 (1997)

    Google Scholar 

  23. Hemami, H., Camana, P.: Nonlinear feedback in simple locomotion systems. IEEE Trans. Autom. Control 21(6), 855–860 (1976)

    Article  MathSciNet  Google Scholar 

  24. Herr, H., Popovic, M.: Angular momentum in human walking. J. Exp. Biol. 211, 467–481 (2008)

    Article  Google Scholar 

  25. Hofmann, A., Massaquoi, S., Popovic, M., Herr, H.: A sliding controller for bipedal balancing using integrated movement of contact and non-contact limbs. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 Sep.–2 Oct. 2004, vol. 2, pp. 1952–1959 (2004)

    Google Scholar 

  26. Hofmann, A., Popovic, M., Herr, H.: Exploiting angular momentum to enhance bipedal center-of-mass control. In: IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009, pp. 4423–4429 (2009)

    Google Scholar 

  27. Hurmuzlu, Y., Basdogan, C., Stoianovici, D.: Kinematics and dynamic stability of locomotion of polio patients. J. Biomech. Eng. 118(3), 405–411 (1996)

    Article  Google Scholar 

  28. Hyon, S.H., Cheng, G.: Passivity-based full-body force control for humanoids and application to dynamic balancing and locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 Oct. 2006, pp. 4915–4922 (2006)

    Google Scholar 

  29. Iqbal, K., Pai, Y.C.: Predicted region of stability for balance recovery: motion at the knee joint can improve termination of forward movement. J. Biomech. 33(12), 1619–1627 (2000)

    Article  Google Scholar 

  30. Kajita, S., Fujiwara, K., Kanehiro, F., Yokoi, K., Saito, H., Harada, K., Kaneko, K., Hirukawa, H.: The first human-size humanoid that can fall over safely and stand-up again. In: IEEE-RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 27 Oct.–1 Nov. 2003, vol. 2, pp. 1920–1926 (2003)

    Google Scholar 

  31. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI, USA. 29 Oct.–3 Nov. 2001, vol. 1, pp. 239–246 (2001)

    Google Scholar 

  32. Kalyanakrishnan, S., Goswami, A.: Predicting falls of a humanoid robot through machine learning. In: Twenty-Second IAAI Conference on Artificial Intelligence, Atlanta, GA, USA, 11–15 Jul. 2010, pp. 1793–1798 (2010)

    Google Scholar 

  33. Kim, J.H., Yang, J., Abdel-Malek, K.: A novel formulation for determining joint constraint loads during optimal dynamic motion of redundant manipulators with DH representation. Multibody Syst. Dyn. 19(4), 427–451 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kim, J.H., Xiang, Y., Bhatt, R., Yang, J., Chung, H.J., Arora, J.S., Abdel-Malek, K.: Generating effective whole-body motions of a human-like mechanism with efficient ZMP formulation. Int. J. Robot. Autom. 24(2), 125–136 (2009)

    Google Scholar 

  35. Kim, J.H., Yang, J., Abdel-Malek, K.: Planning load-effective dynamic motions of highly articulated human model for generic tasks. Robotica 27(5), 739–747 (2009)

    Article  Google Scholar 

  36. Kim, J.H., Xiang, Y., Yang, J., Arora, J.S., Abdel-Malek, K.: Dynamic motion planning of overarm throw for a biped human multibody system. Multibody Syst. Dyn. 24(1), 1–24 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kim, J.H.: Optimization of throwing motion planning for whole-body humanoid mechanism: sidearm and maximum distance. Mech. Mach. Theory 46(4), 438–453 (2011)

    Article  MATH  Google Scholar 

  38. Koolen, T., de Boer, T., Rebula, J., Goswami, A., Pratt, J.: Capturability-based analysis and control of legged locomotion, part 1: theory and application to three simple gait models. Int. J. Robot. Res. 31(9), 1094–1113 (2012)

    Article  Google Scholar 

  39. Kuffner, J.J., Kagami, S., Nishiwaki, K., Inaba, M., Inoue, H.: Dynamically-stable motion planning for humanoid robots. Auton. Robots 12(1), 105–118 (2002)

    Article  MATH  Google Scholar 

  40. Kuo, A.D.: Stabilization of lateral motion in passive dynamic walking. Int. J. Robot. Res. 18(9), 917–930 (1999)

    Article  Google Scholar 

  41. Lee, S.H., Goswami, A.: Reaction mass pendulum (RMP): an explicit model for centroidal angular momentum of humanoid robots. In: IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 Apr. 2007, pp. 4667–4672 (2007)

    Google Scholar 

  42. Lee, S.H., Goswami, A.: Fall on backpack: damage minimizing humanoid fall on targeted body segment using momentum control. In: IDETC/CIE 2011 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, DC, USA, 28–31 Aug. 2011, pp. 703–712 (2011)

    Google Scholar 

  43. Lemaire, E.D., Goudreau, L., Yakimovich, T., Kofman, J.: Angular-velocity control approach for stance-control orthoses. IEEE Trans. Neural Syst. Rehabil. Eng. 17(5), 497–503 (2009)

    Article  Google Scholar 

  44. Liu, R., Ono, K.: Energy optimal trajectory planning of biped walking motion. In: Proceedings of the International Symposium on Adaptive Motion of Animals and Machines, Montreal, Canada, 8–12 Aug. 2000, pp. WeA-11-3 (2000)

    Google Scholar 

  45. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., Wörgötter, F.: Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Comput. Biol. 3(7), 1305–1320 (2007), e134

    Article  Google Scholar 

  46. McMahon, T.A.: Muscles, Reflexes, and Locomotion. Princeton University Press, Princeton (1984)

    Google Scholar 

  47. Mummolo, C., Kim, J.H.: Passive and dynamic gait measures for biped mechanism: formulation and simulation analysis. Robotica 31(4), 555–572 (2013)

    Article  Google Scholar 

  48. Ni, X., Chen, W., Liu, J.: A comparison between human walking and passive dynamic walking. In: ICIEA 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, May 25–27, 2009, pp. 2552–2555 (2009)

    Google Scholar 

  49. Oh, S., Hata, N., Hori, Y.: Proposal of human-friendly motion control and its application to wheelchair. In: SICE 2004 Annual Conference, Sapporo, Japan, Aug. 4–6, 2004, vol. 3, pp. 2214–2219 (2004)

    Google Scholar 

  50. Pai, Y.C., Patton, J.: Center of mass velocity-position predictions for balance control. J. Biomech. 30(5), 347–354 (1997)

    Article  Google Scholar 

  51. Patton, J.L., Pai, Y.C., Lee, W.A.: Evaluation of a model that determines the stability limits of dynamic balance. Gait Posture 9(1), 38–49 (1999)

    Article  Google Scholar 

  52. Peasgood, M., Kubica, E., McPhee, J.: Stabilization of a dynamic walking gait simulation. J. Comput. Nonlinear Dyn. 2(1), 65–72 (2007)

    Article  Google Scholar 

  53. Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013–1032 (2005)

    Article  Google Scholar 

  54. Pratt, J.E., Tedrake, R.: Velocity-based stability margins for fast bipedal walking. In: Fast Motions in Biomechanics and Robotics. Lecture Notes in Control and Information Sciences, vol. 340, pp. 299–324. Springer, Berlin Heidelberg (2006)

    Chapter  Google Scholar 

  55. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 6th IEEE-RAS International Conference on Humanoid Robots, Genoa, Italy, 4–6 Dec. 2006, pp. 200–207 (2006)

    Google Scholar 

  56. Pratt, J., Koolen, T., de Boer, T., Rebula, J., Cotton, S., Carff, J., Johnson, M., Neuhaus, P.: Capturability-based analysis and control of legged locomotion, part 2: application to M2V2, a lower-body humanoid. Int. J. Robot. Res. 31(10), 1117–1133 (2012)

    Article  Google Scholar 

  57. Ross, S.D., Tanaka, M.L., Senatore, C.: Detecting dynamical boundaries from kinematic data in biomechanics. Chaos. 20(1), 017507 (2010)

    Article  Google Scholar 

  58. Sangwan, V., Taneja, A., Mukherjee, S.: Design of a robust self-excited biped walking mechanism. Mech. Mach. Theory 39(12), 1385–1397 (2004)

    Article  MATH  Google Scholar 

  59. Sangwan, V., Agrawal, S.K.: Differentially flat design of bipeds ensuring limit cycles. IEEE/ASME Trans. Mechatron. 14(6), 647–657 (2009)

    Article  Google Scholar 

  60. Sardain, P., Bessonnet, G.: Forces acting on a biped robot. center of pressure—zero moment point. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 34(5), 630–637 (2004)

    Article  Google Scholar 

  61. Saunders, M., Inman, V.T., Eberhart, H.D.: The major determinants in normal and pathological gait. J. Bone Jt. Surg. 35(3), 543–558 (1953)

    Google Scholar 

  62. Silva, F., Santos, V.: Towards an autonomous small-size humanoid robot: design issues and control strategies. In: 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, 27–30 Jun. 2005, pp. 87–92 (2005)

    Chapter  Google Scholar 

  63. Spong, M.W., Bullo, F.: Controlled symmetries and passive walking. In: The International Federation of Automatic Control 15th Triennial World Congress, Barcelona, Spain, 21–26 Jul. 2002 (2002)

    Google Scholar 

  64. Stephens, B.: Humanoid push recovery. In: 7th IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA, 29 Nov.–1 Dec. 2007, pp. 589–595 (2007)

    Google Scholar 

  65. Stephens, B., Atkeson, C.: Modeling and control of periodic humanoid balance using the linear biped model. In: 9th IEEE-RAS International Conference on Humanoid Robots, Paris, 7–10 Dec. 2009, pp. 379–384 (2009)

    Google Scholar 

  66. Takahashi, Y., Takahashi, H., Sakamoto, K., Ogawa, S.: Human balance measurement and human posture assist robot design. In: 38th Annual Conference of the SICE, Morioka, Japan, 28–30 Aug. 1999, pp. 983–988 (1999)

    Google Scholar 

  67. Takeguchi, T., Ohashi, M., Kim, J.: Walking mechanism of 3D passive dynamic motion with lateral rolling. In: The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, South Korea, 26–29 Aug. 2007, pp. 240–245 (2007)

    Google Scholar 

  68. Takenaka, T., Matsumoto, T., Yoshiike, T.: Real time motion generation and control for biped robot-1st report: walking gait pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 Oct. 2009, pp. 1084–1091 (2009)

    Google Scholar 

  69. Takenaka, T., Matsumoto, T., Yoshiike, T., Shirokura, S.: Real time motion generation and control for biped robot-2nd report: running gait pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 Oct. 2009, pp. 1092–1099 (2009)

    Google Scholar 

  70. Takenaka, T., Matsumoto, T., Yoshiike, T.: Real time motion generation and control for biped robot-3rd report: dynamics error compensation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 Oct. 2009, pp. 1594–1600 (2009)

    Google Scholar 

  71. Takenaka, T., Matsumoto, T., Yoshiike, T., Hasegawa, T., Shirokura, S., Kaneko, H., Orita, A.: Real time motion generation and control for biped robot-4th report: integrated balance control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 Oct. 2009, pp. 1601–1608 (2009)

    Google Scholar 

  72. Takubo, T., Tanaka, T., Inoue, K., Arai, T.: Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot. In: IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 Apr. 2007, pp. 2676–2681 (2007)

    Google Scholar 

  73. Takubo, T., Inoue, K., Arai, T.: Pushing an object considering the hand reflect forces by humanoid robot in dynamic walking. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 Apr. 2005, pp. 1706–1711 (2005)

    Google Scholar 

  74. Tanaka, T., Takubo, T., Inoue, K., Arai, T.: Emergent stop for humanoid robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 Oct. 2006, pp. 3970–3975 (2006)

    Google Scholar 

  75. Vaughan, C.L., Davis, B.L., O’Connor, J.C.: Dynamics of Human Gait. Kiboho Publishers, Cape Town (1992)

    Google Scholar 

  76. Vukobratović, M., Borovac, B.: Zero-moment point-thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)

    Article  Google Scholar 

  77. Vukobratović, M., Potkonjak, V., Babković, K., Borovac, B.: Simulation model of general human and humanoid motion. Multibody Syst. Dyn. 17(1), 71–96 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  78. Waldron, K.J., Estremera, J., Csonka, P.J., Singh, S.P.N.: Analyzing bounding and galloping using simple models. J. Mech. Robot. 1(1), 011002 (2009)

    Article  Google Scholar 

  79. Wieber, P.B.: On the stability of walking systems. In: Proceedings of the International Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Japan, 11–12 Dec. 2002, pp. 53–59 (2002)

    Google Scholar 

  80. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

  81. Wisse, M., Schwab, A.L., van der Linde, R.Q., van der Helm, F.C.T.: How to keep from falling forward: elementary swing leg action for passive dynamic walkers. IEEE Trans. Robot. 21(3), 393–401 (2005)

    Article  Google Scholar 

  82. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct. Multidiscip. Optim. 42(1), 1–23 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  83. Yang, C., Wu, Q.: Effects of gravity and friction constraints on bipedal balance control. In: IEEE Conference on Control Applications, Toronto, ON, Canada, 28–31 Aug. 2005, pp. 1093–1098 (2005)

    Google Scholar 

  84. Yang, C., Wu, Q.: Effects of constraints on bipedal balance control. In: American Control Conference, Minneapolis, MN, USA, 14–16 Jun. 2006 (2006)

    Google Scholar 

  85. Yang, C., Wu, Q.: On the effects of constraints on bipedal balance control during standing. In: American Control Conferences, New York, NY, USA, 9–13 Jul. 2007, pp. 2842–2847 (2007)

    Google Scholar 

  86. Yang, J., Kim, J.H.: Static joint torque determination of a human model for standing and seating tasks considering balance. J. Mech. Robot. 2(3), 031005 (2010)

    Article  Google Scholar 

  87. Yun, S., Goswami, A., Sakagami, Y.: Safe fall: humanoid robot fall direction change through intelligent stepping and inertia shaping. In: IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009, pp. 781–787 (2009)

    Google Scholar 

  88. Zaoui, C., Bruneau, O., Ouezdou, F.B., Maalej, A.: Simulations of the dynamic behavior of a bipedal robot with trunk and arms subjected to 3D external disturbances in a vertical posture, during walking and during object handling. Multibody Syst. Dyn. 21(3), 261–280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  89. Zielinska, T., Chew, C.M., Kryczka, P., Jargilo, T.: Robot gait synthesis using the scheme of human motions skills development. Mech. Mach. Theory 44(3), 541–558 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Joo, C.B. Numerical construction of balanced state manifold for single-support legged mechanism in sagittal plane. Multibody Syst Dyn 31, 257–281 (2014). https://doi.org/10.1007/s11044-013-9376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9376-5

Keywords

Navigation